Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges
Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameter...
Gespeichert in:
Veröffentlicht in: | Journal of wind engineering and industrial aerodynamics 2011-04, Vol.99 (4), p.217-225 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 4 |
container_start_page | 217 |
container_title | Journal of wind engineering and industrial aerodynamics |
container_volume | 99 |
creator | Schlünzen, K. Heinke Grawe, David Bohnenstengel, Sylvia I. Schlüter, Ingo Koppmann, Ralf |
description | Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper. |
doi_str_mv | 10.1016/j.jweia.2011.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876224631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610511000110</els_id><sourcerecordid>876224631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBCxZEFOCf-I4HhhQxa8qscDAZLnOTXGUxMVOQWw8BE_Ik-C0FSPSlSz5fudcnYPQKcEZwaS4aLLmA6zOKCYkw3Gw3EMTUgqalkSKfTSJlEgLgvkhOgqhwRiLXLAJenlwth-SzlXQtrZfJq5O3CIM2rSQ2L5aG6gS3VdJB8EFo-OvedX9EsLP1_ds7T1EdWs7O4QNFpdtC-P-GB3Uug1wsnun6Pnm-ml2l84fb-9nV_PUsIIPKcFiYQTTgmMQnBsBzORU13XFFjrPZcVMIYWkOOeCAi2FLDXlQuaGllyXnE3R-dZ35d3bGsKgOhtMTKN7cOugSlFQmheMRJJtSeNdCB5qtfK20_5TEazGHlWjNj2qsUeF42AZVWc7fz3mr73ujQ1_UpoTKfnG_XLLQQz7bsGrYCz0sT_rwQyqcvbfO78JvYqL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876224631</pqid></control><display><type>article</type><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</creator><creatorcontrib>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</creatorcontrib><description>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2011.01.009</identifier><identifier>CODEN: JWEAD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Climatology and bioclimatics for buildings ; Computation methods. Tables. Charts ; Exact sciences and technology ; Joint modelling ; Mesoscale ; METRAS ; Microscale ; MITRAS ; Multi-scale model ; Nesting ; Structural analysis. Stresses ; Time-slice approach</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2011-04, Vol.99 (4), p.217-225</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</citedby><cites>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jweia.2011.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,3539,23917,23918,25127,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24199531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><creatorcontrib>Grawe, David</creatorcontrib><creatorcontrib>Bohnenstengel, Sylvia I.</creatorcontrib><creatorcontrib>Schlüter, Ingo</creatorcontrib><creatorcontrib>Koppmann, Ralf</creatorcontrib><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Joint modelling</subject><subject>Mesoscale</subject><subject>METRAS</subject><subject>Microscale</subject><subject>MITRAS</subject><subject>Multi-scale model</subject><subject>Nesting</subject><subject>Structural analysis. Stresses</subject><subject>Time-slice approach</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBCxZEFOCf-I4HhhQxa8qscDAZLnOTXGUxMVOQWw8BE_Ik-C0FSPSlSz5fudcnYPQKcEZwaS4aLLmA6zOKCYkw3Gw3EMTUgqalkSKfTSJlEgLgvkhOgqhwRiLXLAJenlwth-SzlXQtrZfJq5O3CIM2rSQ2L5aG6gS3VdJB8EFo-OvedX9EsLP1_ds7T1EdWs7O4QNFpdtC-P-GB3Uug1wsnun6Pnm-ml2l84fb-9nV_PUsIIPKcFiYQTTgmMQnBsBzORU13XFFjrPZcVMIYWkOOeCAi2FLDXlQuaGllyXnE3R-dZ35d3bGsKgOhtMTKN7cOugSlFQmheMRJJtSeNdCB5qtfK20_5TEazGHlWjNj2qsUeF42AZVWc7fz3mr73ujQ1_UpoTKfnG_XLLQQz7bsGrYCz0sT_rwQyqcvbfO78JvYqL</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Schlünzen, K. Heinke</creator><creator>Grawe, David</creator><creator>Bohnenstengel, Sylvia I.</creator><creator>Schlüter, Ingo</creator><creator>Koppmann, Ralf</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110401</creationdate><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><author>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Joint modelling</topic><topic>Mesoscale</topic><topic>METRAS</topic><topic>Microscale</topic><topic>MITRAS</topic><topic>Multi-scale model</topic><topic>Nesting</topic><topic>Structural analysis. Stresses</topic><topic>Time-slice approach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><creatorcontrib>Grawe, David</creatorcontrib><creatorcontrib>Bohnenstengel, Sylvia I.</creatorcontrib><creatorcontrib>Schlüter, Ingo</creatorcontrib><creatorcontrib>Koppmann, Ralf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlünzen, K. Heinke</au><au>Grawe, David</au><au>Bohnenstengel, Sylvia I.</au><au>Schlüter, Ingo</au><au>Koppmann, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>99</volume><issue>4</issue><spage>217</spage><epage>225</epage><pages>217-225</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><coden>JWEAD6</coden><abstract>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2011.01.009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6105 |
ispartof | Journal of wind engineering and industrial aerodynamics, 2011-04, Vol.99 (4), p.217-225 |
issn | 0167-6105 1872-8197 |
language | eng |
recordid | cdi_proquest_miscellaneous_876224631 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Buildings. Public works Climatology and bioclimatics for buildings Computation methods. Tables. Charts Exact sciences and technology Joint modelling Mesoscale METRAS Microscale MITRAS Multi-scale model Nesting Structural analysis. Stresses Time-slice approach |
title | Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20modelling%20of%20obstacle%20induced%20and%20mesoscale%20changes%E2%80%94Current%20limits%20and%20challenges&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Schl%C3%BCnzen,%20K.%20Heinke&rft.date=2011-04-01&rft.volume=99&rft.issue=4&rft.spage=217&rft.epage=225&rft.pages=217-225&rft.issn=0167-6105&rft.eissn=1872-8197&rft.coden=JWEAD6&rft_id=info:doi/10.1016/j.jweia.2011.01.009&rft_dat=%3Cproquest_cross%3E876224631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876224631&rft_id=info:pmid/&rft_els_id=S0167610511000110&rfr_iscdi=true |