Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges

Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2011-04, Vol.99 (4), p.217-225
Hauptverfasser: Schlünzen, K. Heinke, Grawe, David, Bohnenstengel, Sylvia I., Schlüter, Ingo, Koppmann, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 4
container_start_page 217
container_title Journal of wind engineering and industrial aerodynamics
container_volume 99
creator Schlünzen, K. Heinke
Grawe, David
Bohnenstengel, Sylvia I.
Schlüter, Ingo
Koppmann, Ralf
description Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.
doi_str_mv 10.1016/j.jweia.2011.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876224631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610511000110</els_id><sourcerecordid>876224631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwBCxZEFOCf-I4HhhQxa8qscDAZLnOTXGUxMVOQWw8BE_Ik-C0FSPSlSz5fudcnYPQKcEZwaS4aLLmA6zOKCYkw3Gw3EMTUgqalkSKfTSJlEgLgvkhOgqhwRiLXLAJenlwth-SzlXQtrZfJq5O3CIM2rSQ2L5aG6gS3VdJB8EFo-OvedX9EsLP1_ds7T1EdWs7O4QNFpdtC-P-GB3Uug1wsnun6Pnm-ml2l84fb-9nV_PUsIIPKcFiYQTTgmMQnBsBzORU13XFFjrPZcVMIYWkOOeCAi2FLDXlQuaGllyXnE3R-dZ35d3bGsKgOhtMTKN7cOugSlFQmheMRJJtSeNdCB5qtfK20_5TEazGHlWjNj2qsUeF42AZVWc7fz3mr73ujQ1_UpoTKfnG_XLLQQz7bsGrYCz0sT_rwQyqcvbfO78JvYqL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876224631</pqid></control><display><type>article</type><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</creator><creatorcontrib>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</creatorcontrib><description>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/j.jweia.2011.01.009</identifier><identifier>CODEN: JWEAD6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Climatology and bioclimatics for buildings ; Computation methods. Tables. Charts ; Exact sciences and technology ; Joint modelling ; Mesoscale ; METRAS ; Microscale ; MITRAS ; Multi-scale model ; Nesting ; Structural analysis. Stresses ; Time-slice approach</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2011-04, Vol.99 (4), p.217-225</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</citedby><cites>FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jweia.2011.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,3539,23917,23918,25127,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24199531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><creatorcontrib>Grawe, David</creatorcontrib><creatorcontrib>Bohnenstengel, Sylvia I.</creatorcontrib><creatorcontrib>Schlüter, Ingo</creatorcontrib><creatorcontrib>Koppmann, Ralf</creatorcontrib><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><title>Journal of wind engineering and industrial aerodynamics</title><description>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Climatology and bioclimatics for buildings</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Joint modelling</subject><subject>Mesoscale</subject><subject>METRAS</subject><subject>Microscale</subject><subject>MITRAS</subject><subject>Multi-scale model</subject><subject>Nesting</subject><subject>Structural analysis. Stresses</subject><subject>Time-slice approach</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwBCxZEFOCf-I4HhhQxa8qscDAZLnOTXGUxMVOQWw8BE_Ik-C0FSPSlSz5fudcnYPQKcEZwaS4aLLmA6zOKCYkw3Gw3EMTUgqalkSKfTSJlEgLgvkhOgqhwRiLXLAJenlwth-SzlXQtrZfJq5O3CIM2rSQ2L5aG6gS3VdJB8EFo-OvedX9EsLP1_ds7T1EdWs7O4QNFpdtC-P-GB3Uug1wsnun6Pnm-ml2l84fb-9nV_PUsIIPKcFiYQTTgmMQnBsBzORU13XFFjrPZcVMIYWkOOeCAi2FLDXlQuaGllyXnE3R-dZ35d3bGsKgOhtMTKN7cOugSlFQmheMRJJtSeNdCB5qtfK20_5TEazGHlWjNj2qsUeF42AZVWc7fz3mr73ujQ1_UpoTKfnG_XLLQQz7bsGrYCz0sT_rwQyqcvbfO78JvYqL</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Schlünzen, K. Heinke</creator><creator>Grawe, David</creator><creator>Bohnenstengel, Sylvia I.</creator><creator>Schlüter, Ingo</creator><creator>Koppmann, Ralf</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110401</creationdate><title>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</title><author>Schlünzen, K. Heinke ; Grawe, David ; Bohnenstengel, Sylvia I. ; Schlüter, Ingo ; Koppmann, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-107bc73a750e755c7e3c42affd3ba449d3c6979204572e28798a25794c285a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Climatology and bioclimatics for buildings</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Joint modelling</topic><topic>Mesoscale</topic><topic>METRAS</topic><topic>Microscale</topic><topic>MITRAS</topic><topic>Multi-scale model</topic><topic>Nesting</topic><topic>Structural analysis. Stresses</topic><topic>Time-slice approach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlünzen, K. Heinke</creatorcontrib><creatorcontrib>Grawe, David</creatorcontrib><creatorcontrib>Bohnenstengel, Sylvia I.</creatorcontrib><creatorcontrib>Schlüter, Ingo</creatorcontrib><creatorcontrib>Koppmann, Ralf</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlünzen, K. Heinke</au><au>Grawe, David</au><au>Bohnenstengel, Sylvia I.</au><au>Schlüter, Ingo</au><au>Koppmann, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>99</volume><issue>4</issue><spage>217</spage><epage>225</epage><pages>217-225</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><coden>JWEAD6</coden><abstract>Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jweia.2011.01.009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2011-04, Vol.99 (4), p.217-225
issn 0167-6105
1872-8197
language eng
recordid cdi_proquest_miscellaneous_876224631
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Buildings. Public works
Climatology and bioclimatics for buildings
Computation methods. Tables. Charts
Exact sciences and technology
Joint modelling
Mesoscale
METRAS
Microscale
MITRAS
Multi-scale model
Nesting
Structural analysis. Stresses
Time-slice approach
title Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20modelling%20of%20obstacle%20induced%20and%20mesoscale%20changes%E2%80%94Current%20limits%20and%20challenges&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Schl%C3%BCnzen,%20K.%20Heinke&rft.date=2011-04-01&rft.volume=99&rft.issue=4&rft.spage=217&rft.epage=225&rft.pages=217-225&rft.issn=0167-6105&rft.eissn=1872-8197&rft.coden=JWEAD6&rft_id=info:doi/10.1016/j.jweia.2011.01.009&rft_dat=%3Cproquest_cross%3E876224631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876224631&rft_id=info:pmid/&rft_els_id=S0167610511000110&rfr_iscdi=true