Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions

Real time availability and high space–time resolution of radar based quantitative precipitation estimates (QPE) are appealing features for spatially detailed hydrological prediction and forecasting applications using distributed hydrological models. However, the data obtained remain an important sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric research 2011-05, Vol.100 (2), p.237-245
Hauptverfasser: Schröter, Kai, Llort, Xavier, Velasco-Forero, Carlos, Ostrowski, Manfred, Sempere-Torres, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 2
container_start_page 237
container_title Atmospheric research
container_volume 100
creator Schröter, Kai
Llort, Xavier
Velasco-Forero, Carlos
Ostrowski, Manfred
Sempere-Torres, Daniel
description Real time availability and high space–time resolution of radar based quantitative precipitation estimates (QPE) are appealing features for spatially detailed hydrological prediction and forecasting applications using distributed hydrological models. However, the data obtained remain an important source of uncertainty for hydrological predictions. Insight into the characteristics of this uncertainty is still limited and its quantification is a challenging task. This work studies the characteristics of radar QPE uncertainties and its implications on both hydrological modelling results and hydrological model parameter estimates. The uncertainty of a real time radar QPE product available in 10 minute intervals on a 1 km 2 grid is quantified by comparison to a reference precipitation field, which includes additional observations from rain gauge records. Based on this analysis a probabilistic model is proposed that describes the uncertainty structure of the radar QPE field. An ensemble of precipitation fields is generated that represents a quantitative estimate of radar QPE uncertainty from the sampling of the probabilistic model. On this basis the implications of radar QPE uncertainty on distributed hydrological model predictions are studied. The methodology proposed is applied to a real-world case study using the river basin of the Besòs in Spain as a test bed. The feasibility of the approach to condense the knowledge about radar QPE uncertainty in a probabilistic model and to map this uncertainty to the response of a hydrological model using an ensemble of precipitation fields is demonstrated. The results show that the probabilistic use of radar QPE may add valuable information to hydrological predictions and may reduce the bias of hydrological model parameter estimates.
doi_str_mv 10.1016/j.atmosres.2010.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876224498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169809510002085</els_id><sourcerecordid>1671512112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-eed419f52ac1c3059d9e502a3d1fbf16db9bd50e95d1ba11fb8e11416a0007ca3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BclNL10zbdNtbor4BQte9BzSZKpZ2mZNssL-e0dXr3rJwMszL5mHsTMQcxDQXK7mJo8hRUzzUlAo2rmAeo_NoF1URdkquc9mBKqiFUoesqOUVkIIKWo1Y93juB68NdmHKfHQ82icifT6qTfDwDFlP5qMiW8mizFTnrc8TNz5lKPvNhkdf9u6GIbwSj0DH4PDga8jOm-_W0_YAVUlPP2Zx-zl7vb55qFYPt0_3lwvC1vXVS4QXQ2ql6WxYCshlVMoRWkqB33XQ-M61TkpUEkHnQEKWwSooTF0zMKa6pid73rXMbxv6ON69MniMJgJwybpdtGUZV2rlsiLP0loFiChBCgJbXaojSGR416vIwmJWw1Cf-nXK_2rX3_p16LVpJ8Wr3aLSCd_eIw6WY_k0PmINmsX_H8Vn3iNlMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671512112</pqid></control><display><type>article</type><title>Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schröter, Kai ; Llort, Xavier ; Velasco-Forero, Carlos ; Ostrowski, Manfred ; Sempere-Torres, Daniel</creator><creatorcontrib>Schröter, Kai ; Llort, Xavier ; Velasco-Forero, Carlos ; Ostrowski, Manfred ; Sempere-Torres, Daniel</creatorcontrib><description>Real time availability and high space–time resolution of radar based quantitative precipitation estimates (QPE) are appealing features for spatially detailed hydrological prediction and forecasting applications using distributed hydrological models. However, the data obtained remain an important source of uncertainty for hydrological predictions. Insight into the characteristics of this uncertainty is still limited and its quantification is a challenging task. This work studies the characteristics of radar QPE uncertainties and its implications on both hydrological modelling results and hydrological model parameter estimates. The uncertainty of a real time radar QPE product available in 10 minute intervals on a 1 km 2 grid is quantified by comparison to a reference precipitation field, which includes additional observations from rain gauge records. Based on this analysis a probabilistic model is proposed that describes the uncertainty structure of the radar QPE field. An ensemble of precipitation fields is generated that represents a quantitative estimate of radar QPE uncertainty from the sampling of the probabilistic model. On this basis the implications of radar QPE uncertainty on distributed hydrological model predictions are studied. The methodology proposed is applied to a real-world case study using the river basin of the Besòs in Spain as a test bed. The feasibility of the approach to condense the knowledge about radar QPE uncertainty in a probabilistic model and to map this uncertainty to the response of a hydrological model using an ensemble of precipitation fields is demonstrated. The results show that the probabilistic use of radar QPE may add valuable information to hydrological predictions and may reduce the bias of hydrological model parameter estimates.</description><identifier>ISSN: 0169-8095</identifier><identifier>EISSN: 1873-2895</identifier><identifier>DOI: 10.1016/j.atmosres.2010.08.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Distributed hydrological modelling ; Ensemble rainfall fields ; Estimates ; Freshwater ; Hydrology ; Mathematical models ; Precipitation ; Probabilistic methods ; Probability theory ; Radar ; Radar rainfall estimates ; Uncertainty ; Uncertainty analysis</subject><ispartof>Atmospheric research, 2011-05, Vol.100 (2), p.237-245</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-eed419f52ac1c3059d9e502a3d1fbf16db9bd50e95d1ba11fb8e11416a0007ca3</citedby><cites>FETCH-LOGICAL-c443t-eed419f52ac1c3059d9e502a3d1fbf16db9bd50e95d1ba11fb8e11416a0007ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.atmosres.2010.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schröter, Kai</creatorcontrib><creatorcontrib>Llort, Xavier</creatorcontrib><creatorcontrib>Velasco-Forero, Carlos</creatorcontrib><creatorcontrib>Ostrowski, Manfred</creatorcontrib><creatorcontrib>Sempere-Torres, Daniel</creatorcontrib><title>Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions</title><title>Atmospheric research</title><description>Real time availability and high space–time resolution of radar based quantitative precipitation estimates (QPE) are appealing features for spatially detailed hydrological prediction and forecasting applications using distributed hydrological models. However, the data obtained remain an important source of uncertainty for hydrological predictions. Insight into the characteristics of this uncertainty is still limited and its quantification is a challenging task. This work studies the characteristics of radar QPE uncertainties and its implications on both hydrological modelling results and hydrological model parameter estimates. The uncertainty of a real time radar QPE product available in 10 minute intervals on a 1 km 2 grid is quantified by comparison to a reference precipitation field, which includes additional observations from rain gauge records. Based on this analysis a probabilistic model is proposed that describes the uncertainty structure of the radar QPE field. An ensemble of precipitation fields is generated that represents a quantitative estimate of radar QPE uncertainty from the sampling of the probabilistic model. On this basis the implications of radar QPE uncertainty on distributed hydrological model predictions are studied. The methodology proposed is applied to a real-world case study using the river basin of the Besòs in Spain as a test bed. The feasibility of the approach to condense the knowledge about radar QPE uncertainty in a probabilistic model and to map this uncertainty to the response of a hydrological model using an ensemble of precipitation fields is demonstrated. The results show that the probabilistic use of radar QPE may add valuable information to hydrological predictions and may reduce the bias of hydrological model parameter estimates.</description><subject>Distributed hydrological modelling</subject><subject>Ensemble rainfall fields</subject><subject>Estimates</subject><subject>Freshwater</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Precipitation</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Radar</subject><subject>Radar rainfall estimates</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0169-8095</issn><issn>1873-2895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BclNL10zbdNtbor4BQte9BzSZKpZ2mZNssL-e0dXr3rJwMszL5mHsTMQcxDQXK7mJo8hRUzzUlAo2rmAeo_NoF1URdkquc9mBKqiFUoesqOUVkIIKWo1Y93juB68NdmHKfHQ82icifT6qTfDwDFlP5qMiW8mizFTnrc8TNz5lKPvNhkdf9u6GIbwSj0DH4PDga8jOm-_W0_YAVUlPP2Zx-zl7vb55qFYPt0_3lwvC1vXVS4QXQ2ql6WxYCshlVMoRWkqB33XQ-M61TkpUEkHnQEKWwSooTF0zMKa6pid73rXMbxv6ON69MniMJgJwybpdtGUZV2rlsiLP0loFiChBCgJbXaojSGR416vIwmJWw1Cf-nXK_2rX3_p16LVpJ8Wr3aLSCd_eIw6WY_k0PmINmsX_H8Vn3iNlMo</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Schröter, Kai</creator><creator>Llort, Xavier</creator><creator>Velasco-Forero, Carlos</creator><creator>Ostrowski, Manfred</creator><creator>Sempere-Torres, Daniel</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20110501</creationdate><title>Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions</title><author>Schröter, Kai ; Llort, Xavier ; Velasco-Forero, Carlos ; Ostrowski, Manfred ; Sempere-Torres, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-eed419f52ac1c3059d9e502a3d1fbf16db9bd50e95d1ba11fb8e11416a0007ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Distributed hydrological modelling</topic><topic>Ensemble rainfall fields</topic><topic>Estimates</topic><topic>Freshwater</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Precipitation</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Radar</topic><topic>Radar rainfall estimates</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröter, Kai</creatorcontrib><creatorcontrib>Llort, Xavier</creatorcontrib><creatorcontrib>Velasco-Forero, Carlos</creatorcontrib><creatorcontrib>Ostrowski, Manfred</creatorcontrib><creatorcontrib>Sempere-Torres, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröter, Kai</au><au>Llort, Xavier</au><au>Velasco-Forero, Carlos</au><au>Ostrowski, Manfred</au><au>Sempere-Torres, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions</atitle><jtitle>Atmospheric research</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>100</volume><issue>2</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>0169-8095</issn><eissn>1873-2895</eissn><abstract>Real time availability and high space–time resolution of radar based quantitative precipitation estimates (QPE) are appealing features for spatially detailed hydrological prediction and forecasting applications using distributed hydrological models. However, the data obtained remain an important source of uncertainty for hydrological predictions. Insight into the characteristics of this uncertainty is still limited and its quantification is a challenging task. This work studies the characteristics of radar QPE uncertainties and its implications on both hydrological modelling results and hydrological model parameter estimates. The uncertainty of a real time radar QPE product available in 10 minute intervals on a 1 km 2 grid is quantified by comparison to a reference precipitation field, which includes additional observations from rain gauge records. Based on this analysis a probabilistic model is proposed that describes the uncertainty structure of the radar QPE field. An ensemble of precipitation fields is generated that represents a quantitative estimate of radar QPE uncertainty from the sampling of the probabilistic model. On this basis the implications of radar QPE uncertainty on distributed hydrological model predictions are studied. The methodology proposed is applied to a real-world case study using the river basin of the Besòs in Spain as a test bed. The feasibility of the approach to condense the knowledge about radar QPE uncertainty in a probabilistic model and to map this uncertainty to the response of a hydrological model using an ensemble of precipitation fields is demonstrated. The results show that the probabilistic use of radar QPE may add valuable information to hydrological predictions and may reduce the bias of hydrological model parameter estimates.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.atmosres.2010.08.014</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-8095
ispartof Atmospheric research, 2011-05, Vol.100 (2), p.237-245
issn 0169-8095
1873-2895
language eng
recordid cdi_proquest_miscellaneous_876224498
source Elsevier ScienceDirect Journals Complete
subjects Distributed hydrological modelling
Ensemble rainfall fields
Estimates
Freshwater
Hydrology
Mathematical models
Precipitation
Probabilistic methods
Probability theory
Radar
Radar rainfall estimates
Uncertainty
Uncertainty analysis
title Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20radar%20rainfall%20estimates%20uncertainty%20on%20distributed%20hydrological%20model%20predictions&rft.jtitle=Atmospheric%20research&rft.au=Schr%C3%B6ter,%20Kai&rft.date=2011-05-01&rft.volume=100&rft.issue=2&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=0169-8095&rft.eissn=1873-2895&rft_id=info:doi/10.1016/j.atmosres.2010.08.014&rft_dat=%3Cproquest_cross%3E1671512112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671512112&rft_id=info:pmid/&rft_els_id=S0169809510002085&rfr_iscdi=true