Investigation of adhesion of modern wound dressings: a comparative analysis of 56 different wound dressings
Introduction In the process of chronic wound care, adhesive wound dressings may cause pain and injury in the wound environment during dressing changes. At present, no standardized test procedures are available for the investigation of adhesion of wound dressings. Therefore, our study aimed to test...
Gespeichert in:
Veröffentlicht in: | Journal of the European Academy of Dermatology and Venereology 2011-08, Vol.25 (8), p.933-939 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction In the process of chronic wound care, adhesive wound dressings may cause pain and injury in the wound environment during dressing changes. At present, no standardized test procedures are available for the investigation of adhesion of wound dressings. Therefore, our study aimed to test the adhesion of different wound dressings on steel as well as on healthy skin.
Methods Within an open, comparative study, the adhesive areas of 56 wound dressings were investigated. The adhesives were categorized into acrylate (n = 23), silicone (n = 9), hydrocolloid (n = 17) and polyurethane groups (n = 7). Using an especially modified testing machine, the adhesion of the wound dressings was measured on steel as well as on the skin of healthy study participants, in compliance with the European EN 1939:2003 standard.
Results The energy required to remove the wound dressings from human skin, was measured in Newton (N) and the following median values were obtained: hydrocolloid (2.25 N) > acrylate (1.14 N) > polyurethane (0.9 N) > silicone (0.7 N). The subjective pain intensity during the removal of the wound dressings was recorded using the visual analogue scale (VAS) with values ranging from 0 to 10. For hydrocolloid, it was 6.8, for acrylate 4.9, for polyurethane 3.1 and for silicone 2.5 points VAS. In comparison with human skin, the adhesion of wound dressings was significantly higher on steel (P |
---|---|
ISSN: | 0926-9959 1468-3083 |
DOI: | 10.1111/j.1468-3083.2010.03886.x |