Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors

Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2011-07, Vol.54 (13), p.4752-4772
Hauptverfasser: Shultz, Michael D, Cao, Xueying, Chen, Christine H, Cho, Young Shin, Davis, Nicole R, Eckman, Joe, Fan, Jianmei, Fekete, Alex, Firestone, Brant, Flynn, Julie, Green, Jack, Growney, Joseph D, Holmqvist, Mats, Hsu, Meier, Jansson, Daniel, Jiang, Lei, Kwon, Paul, Liu, Gang, Lombardo, Franco, Lu, Qiang, Majumdar, Dyuti, Meta, Christopher, Perez, Lawrence, Pu, Minying, Ramsey, Tim, Remiszewski, Stacy, Skolnik, Suzanne, Traebert, Martin, Urban, Laszlo, Uttamsingh, Vinita, Wang, Ping, Whitebread, Steven, Whitehead, Lewis, Yan-Neale, Yan, Yao, Yung-Mae, Zhou, Liping, Atadja, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4772
container_issue 13
container_start_page 4752
container_title Journal of medicinal chemistry
container_volume 54
creator Shultz, Michael D
Cao, Xueying
Chen, Christine H
Cho, Young Shin
Davis, Nicole R
Eckman, Joe
Fan, Jianmei
Fekete, Alex
Firestone, Brant
Flynn, Julie
Green, Jack
Growney, Joseph D
Holmqvist, Mats
Hsu, Meier
Jansson, Daniel
Jiang, Lei
Kwon, Paul
Liu, Gang
Lombardo, Franco
Lu, Qiang
Majumdar, Dyuti
Meta, Christopher
Perez, Lawrence
Pu, Minying
Ramsey, Tim
Remiszewski, Stacy
Skolnik, Suzanne
Traebert, Martin
Urban, Laszlo
Uttamsingh, Vinita
Wang, Ping
Whitebread, Steven
Whitehead, Lewis
Yan-Neale, Yan
Yao, Yung-Mae
Zhou, Liping
Atadja, Peter
description Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
doi_str_mv 10.1021/jm200388e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875718933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875718933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgiq3VhS8g2Yi4GE1OMrel1ksLhS68bIdMkqEpnUlNMmB9elNau3J14JyPH86P0CUld5QAvV-2QAgrCn2EhjQFkvCC8GM0JAQggQzYAJ15vyQRUWCnaAA0S-ONDlE1XwfTmh8RjO2wbXBYaGw6_GmCs3gsnDJC4jfR6LDZnicb5ey3aEXQyaPwWuGJ8cF2Gj9pISNaxSWedgtTm2CdP0cnjVh5fbGfI_Tx8vw-niSz-et0_DBLBKM8JFDqEnRZZGkTR84Iq4GzgvE6lWmmal5mRGnJKSFZCg3Ps7wpQbJaSVAAKRuhm13u2tmvXvtQtcZLvVqJTtveV0We5rQoGYvydiels9473VRrZ1rhNhUl1bbO6lBntFf71L5utTrIv_4iuN4BIX21tL3r4pP_BP0CY1l67A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875718933</pqid></control><display><type>article</type><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</creator><creatorcontrib>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</creatorcontrib><description>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm200388e</identifier><identifier>PMID: 21650221</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylamides - chemical synthesis ; Acrylamides - pharmacology ; Acrylamides - toxicity ; Animals ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - toxicity ; Drug Screening Assays, Antitumor ; ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels - antagonists &amp; inhibitors ; Half-Life ; HCT116 Cells ; Histone Deacetylase Inhibitors - chemical synthesis ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylase Inhibitors - toxicity ; Humans ; Hydroxamic Acids - chemical synthesis ; Hydroxamic Acids - pharmacology ; Hydroxamic Acids - toxicity ; In Vitro Techniques ; Mice ; Mice, Nude ; Microsomes, Liver - metabolism ; Models, Molecular ; Neoplasm Transplantation ; Patch-Clamp Techniques ; Radioligand Assay ; Rats ; Rats, Sprague-Dawley ; Stereoisomerism ; Structure-Activity Relationship ; Tissue Distribution ; Transplantation, Heterologous</subject><ispartof>Journal of medicinal chemistry, 2011-07, Vol.54 (13), p.4752-4772</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</citedby><cites>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm200388e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm200388e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21650221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shultz, Michael D</creatorcontrib><creatorcontrib>Cao, Xueying</creatorcontrib><creatorcontrib>Chen, Christine H</creatorcontrib><creatorcontrib>Cho, Young Shin</creatorcontrib><creatorcontrib>Davis, Nicole R</creatorcontrib><creatorcontrib>Eckman, Joe</creatorcontrib><creatorcontrib>Fan, Jianmei</creatorcontrib><creatorcontrib>Fekete, Alex</creatorcontrib><creatorcontrib>Firestone, Brant</creatorcontrib><creatorcontrib>Flynn, Julie</creatorcontrib><creatorcontrib>Green, Jack</creatorcontrib><creatorcontrib>Growney, Joseph D</creatorcontrib><creatorcontrib>Holmqvist, Mats</creatorcontrib><creatorcontrib>Hsu, Meier</creatorcontrib><creatorcontrib>Jansson, Daniel</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Kwon, Paul</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lombardo, Franco</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Majumdar, Dyuti</creatorcontrib><creatorcontrib>Meta, Christopher</creatorcontrib><creatorcontrib>Perez, Lawrence</creatorcontrib><creatorcontrib>Pu, Minying</creatorcontrib><creatorcontrib>Ramsey, Tim</creatorcontrib><creatorcontrib>Remiszewski, Stacy</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Traebert, Martin</creatorcontrib><creatorcontrib>Urban, Laszlo</creatorcontrib><creatorcontrib>Uttamsingh, Vinita</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Whitebread, Steven</creatorcontrib><creatorcontrib>Whitehead, Lewis</creatorcontrib><creatorcontrib>Yan-Neale, Yan</creatorcontrib><creatorcontrib>Yao, Yung-Mae</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Atadja, Peter</creatorcontrib><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</description><subject>Acrylamides - chemical synthesis</subject><subject>Acrylamides - pharmacology</subject><subject>Acrylamides - toxicity</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - toxicity</subject><subject>Drug Screening Assays, Antitumor</subject><subject>ERG1 Potassium Channel</subject><subject>Ether-A-Go-Go Potassium Channels - antagonists &amp; inhibitors</subject><subject>Half-Life</subject><subject>HCT116 Cells</subject><subject>Histone Deacetylase Inhibitors - chemical synthesis</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylase Inhibitors - toxicity</subject><subject>Humans</subject><subject>Hydroxamic Acids - chemical synthesis</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Hydroxamic Acids - toxicity</subject><subject>In Vitro Techniques</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microsomes, Liver - metabolism</subject><subject>Models, Molecular</subject><subject>Neoplasm Transplantation</subject><subject>Patch-Clamp Techniques</subject><subject>Radioligand Assay</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereoisomerism</subject><subject>Structure-Activity Relationship</subject><subject>Tissue Distribution</subject><subject>Transplantation, Heterologous</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKAzEUBuAgiq3VhS8g2Yi4GE1OMrel1ksLhS68bIdMkqEpnUlNMmB9elNau3J14JyPH86P0CUld5QAvV-2QAgrCn2EhjQFkvCC8GM0JAQggQzYAJ15vyQRUWCnaAA0S-ONDlE1XwfTmh8RjO2wbXBYaGw6_GmCs3gsnDJC4jfR6LDZnicb5ey3aEXQyaPwWuGJ8cF2Gj9pISNaxSWedgtTm2CdP0cnjVh5fbGfI_Tx8vw-niSz-et0_DBLBKM8JFDqEnRZZGkTR84Iq4GzgvE6lWmmal5mRGnJKSFZCg3Ps7wpQbJaSVAAKRuhm13u2tmvXvtQtcZLvVqJTtveV0We5rQoGYvydiels9473VRrZ1rhNhUl1bbO6lBntFf71L5utTrIv_4iuN4BIX21tL3r4pP_BP0CY1l67A</recordid><startdate>20110714</startdate><enddate>20110714</enddate><creator>Shultz, Michael D</creator><creator>Cao, Xueying</creator><creator>Chen, Christine H</creator><creator>Cho, Young Shin</creator><creator>Davis, Nicole R</creator><creator>Eckman, Joe</creator><creator>Fan, Jianmei</creator><creator>Fekete, Alex</creator><creator>Firestone, Brant</creator><creator>Flynn, Julie</creator><creator>Green, Jack</creator><creator>Growney, Joseph D</creator><creator>Holmqvist, Mats</creator><creator>Hsu, Meier</creator><creator>Jansson, Daniel</creator><creator>Jiang, Lei</creator><creator>Kwon, Paul</creator><creator>Liu, Gang</creator><creator>Lombardo, Franco</creator><creator>Lu, Qiang</creator><creator>Majumdar, Dyuti</creator><creator>Meta, Christopher</creator><creator>Perez, Lawrence</creator><creator>Pu, Minying</creator><creator>Ramsey, Tim</creator><creator>Remiszewski, Stacy</creator><creator>Skolnik, Suzanne</creator><creator>Traebert, Martin</creator><creator>Urban, Laszlo</creator><creator>Uttamsingh, Vinita</creator><creator>Wang, Ping</creator><creator>Whitebread, Steven</creator><creator>Whitehead, Lewis</creator><creator>Yan-Neale, Yan</creator><creator>Yao, Yung-Mae</creator><creator>Zhou, Liping</creator><creator>Atadja, Peter</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110714</creationdate><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><author>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylamides - chemical synthesis</topic><topic>Acrylamides - pharmacology</topic><topic>Acrylamides - toxicity</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - toxicity</topic><topic>Drug Screening Assays, Antitumor</topic><topic>ERG1 Potassium Channel</topic><topic>Ether-A-Go-Go Potassium Channels - antagonists &amp; inhibitors</topic><topic>Half-Life</topic><topic>HCT116 Cells</topic><topic>Histone Deacetylase Inhibitors - chemical synthesis</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylase Inhibitors - toxicity</topic><topic>Humans</topic><topic>Hydroxamic Acids - chemical synthesis</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Hydroxamic Acids - toxicity</topic><topic>In Vitro Techniques</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microsomes, Liver - metabolism</topic><topic>Models, Molecular</topic><topic>Neoplasm Transplantation</topic><topic>Patch-Clamp Techniques</topic><topic>Radioligand Assay</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereoisomerism</topic><topic>Structure-Activity Relationship</topic><topic>Tissue Distribution</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shultz, Michael D</creatorcontrib><creatorcontrib>Cao, Xueying</creatorcontrib><creatorcontrib>Chen, Christine H</creatorcontrib><creatorcontrib>Cho, Young Shin</creatorcontrib><creatorcontrib>Davis, Nicole R</creatorcontrib><creatorcontrib>Eckman, Joe</creatorcontrib><creatorcontrib>Fan, Jianmei</creatorcontrib><creatorcontrib>Fekete, Alex</creatorcontrib><creatorcontrib>Firestone, Brant</creatorcontrib><creatorcontrib>Flynn, Julie</creatorcontrib><creatorcontrib>Green, Jack</creatorcontrib><creatorcontrib>Growney, Joseph D</creatorcontrib><creatorcontrib>Holmqvist, Mats</creatorcontrib><creatorcontrib>Hsu, Meier</creatorcontrib><creatorcontrib>Jansson, Daniel</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Kwon, Paul</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lombardo, Franco</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Majumdar, Dyuti</creatorcontrib><creatorcontrib>Meta, Christopher</creatorcontrib><creatorcontrib>Perez, Lawrence</creatorcontrib><creatorcontrib>Pu, Minying</creatorcontrib><creatorcontrib>Ramsey, Tim</creatorcontrib><creatorcontrib>Remiszewski, Stacy</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Traebert, Martin</creatorcontrib><creatorcontrib>Urban, Laszlo</creatorcontrib><creatorcontrib>Uttamsingh, Vinita</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Whitebread, Steven</creatorcontrib><creatorcontrib>Whitehead, Lewis</creatorcontrib><creatorcontrib>Yan-Neale, Yan</creatorcontrib><creatorcontrib>Yao, Yung-Mae</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Atadja, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shultz, Michael D</au><au>Cao, Xueying</au><au>Chen, Christine H</au><au>Cho, Young Shin</au><au>Davis, Nicole R</au><au>Eckman, Joe</au><au>Fan, Jianmei</au><au>Fekete, Alex</au><au>Firestone, Brant</au><au>Flynn, Julie</au><au>Green, Jack</au><au>Growney, Joseph D</au><au>Holmqvist, Mats</au><au>Hsu, Meier</au><au>Jansson, Daniel</au><au>Jiang, Lei</au><au>Kwon, Paul</au><au>Liu, Gang</au><au>Lombardo, Franco</au><au>Lu, Qiang</au><au>Majumdar, Dyuti</au><au>Meta, Christopher</au><au>Perez, Lawrence</au><au>Pu, Minying</au><au>Ramsey, Tim</au><au>Remiszewski, Stacy</au><au>Skolnik, Suzanne</au><au>Traebert, Martin</au><au>Urban, Laszlo</au><au>Uttamsingh, Vinita</au><au>Wang, Ping</au><au>Whitebread, Steven</au><au>Whitehead, Lewis</au><au>Yan-Neale, Yan</au><au>Yao, Yung-Mae</au><au>Zhou, Liping</au><au>Atadja, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2011-07-14</date><risdate>2011</risdate><volume>54</volume><issue>13</issue><spage>4752</spage><epage>4772</epage><pages>4752-4772</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21650221</pmid><doi>10.1021/jm200388e</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2011-07, Vol.54 (13), p.4752-4772
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_875718933
source MEDLINE; American Chemical Society Journals
subjects Acrylamides - chemical synthesis
Acrylamides - pharmacology
Acrylamides - toxicity
Animals
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - pharmacology
Antineoplastic Agents - toxicity
Drug Screening Assays, Antitumor
ERG1 Potassium Channel
Ether-A-Go-Go Potassium Channels - antagonists & inhibitors
Half-Life
HCT116 Cells
Histone Deacetylase Inhibitors - chemical synthesis
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylase Inhibitors - toxicity
Humans
Hydroxamic Acids - chemical synthesis
Hydroxamic Acids - pharmacology
Hydroxamic Acids - toxicity
In Vitro Techniques
Mice
Mice, Nude
Microsomes, Liver - metabolism
Models, Molecular
Neoplasm Transplantation
Patch-Clamp Techniques
Radioligand Assay
Rats
Rats, Sprague-Dawley
Stereoisomerism
Structure-Activity Relationship
Tissue Distribution
Transplantation, Heterologous
title Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20in%20Vitro%20Cardiac%20Safety%20of%20Hydroxamate-Based%20Histone%20Deacetylase%20Inhibitors&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Shultz,%20Michael%20D&rft.date=2011-07-14&rft.volume=54&rft.issue=13&rft.spage=4752&rft.epage=4772&rft.pages=4752-4772&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/jm200388e&rft_dat=%3Cproquest_cross%3E875718933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875718933&rft_id=info:pmid/21650221&rfr_iscdi=true