Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors
Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2011-07, Vol.54 (13), p.4752-4772 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4772 |
---|---|
container_issue | 13 |
container_start_page | 4752 |
container_title | Journal of medicinal chemistry |
container_volume | 54 |
creator | Shultz, Michael D Cao, Xueying Chen, Christine H Cho, Young Shin Davis, Nicole R Eckman, Joe Fan, Jianmei Fekete, Alex Firestone, Brant Flynn, Julie Green, Jack Growney, Joseph D Holmqvist, Mats Hsu, Meier Jansson, Daniel Jiang, Lei Kwon, Paul Liu, Gang Lombardo, Franco Lu, Qiang Majumdar, Dyuti Meta, Christopher Perez, Lawrence Pu, Minying Ramsey, Tim Remiszewski, Stacy Skolnik, Suzanne Traebert, Martin Urban, Laszlo Uttamsingh, Vinita Wang, Ping Whitebread, Steven Whitehead, Lewis Yan-Neale, Yan Yao, Yung-Mae Zhou, Liping Atadja, Peter |
description | Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels. |
doi_str_mv | 10.1021/jm200388e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875718933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875718933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgiq3VhS8g2Yi4GE1OMrel1ksLhS68bIdMkqEpnUlNMmB9elNau3J14JyPH86P0CUld5QAvV-2QAgrCn2EhjQFkvCC8GM0JAQggQzYAJ15vyQRUWCnaAA0S-ONDlE1XwfTmh8RjO2wbXBYaGw6_GmCs3gsnDJC4jfR6LDZnicb5ey3aEXQyaPwWuGJ8cF2Gj9pISNaxSWedgtTm2CdP0cnjVh5fbGfI_Tx8vw-niSz-et0_DBLBKM8JFDqEnRZZGkTR84Iq4GzgvE6lWmmal5mRGnJKSFZCg3Ps7wpQbJaSVAAKRuhm13u2tmvXvtQtcZLvVqJTtveV0We5rQoGYvydiels9473VRrZ1rhNhUl1bbO6lBntFf71L5utTrIv_4iuN4BIX21tL3r4pP_BP0CY1l67A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875718933</pqid></control><display><type>article</type><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</creator><creatorcontrib>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</creatorcontrib><description>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm200388e</identifier><identifier>PMID: 21650221</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylamides - chemical synthesis ; Acrylamides - pharmacology ; Acrylamides - toxicity ; Animals ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - toxicity ; Drug Screening Assays, Antitumor ; ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels - antagonists & inhibitors ; Half-Life ; HCT116 Cells ; Histone Deacetylase Inhibitors - chemical synthesis ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylase Inhibitors - toxicity ; Humans ; Hydroxamic Acids - chemical synthesis ; Hydroxamic Acids - pharmacology ; Hydroxamic Acids - toxicity ; In Vitro Techniques ; Mice ; Mice, Nude ; Microsomes, Liver - metabolism ; Models, Molecular ; Neoplasm Transplantation ; Patch-Clamp Techniques ; Radioligand Assay ; Rats ; Rats, Sprague-Dawley ; Stereoisomerism ; Structure-Activity Relationship ; Tissue Distribution ; Transplantation, Heterologous</subject><ispartof>Journal of medicinal chemistry, 2011-07, Vol.54 (13), p.4752-4772</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</citedby><cites>FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm200388e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm200388e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21650221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shultz, Michael D</creatorcontrib><creatorcontrib>Cao, Xueying</creatorcontrib><creatorcontrib>Chen, Christine H</creatorcontrib><creatorcontrib>Cho, Young Shin</creatorcontrib><creatorcontrib>Davis, Nicole R</creatorcontrib><creatorcontrib>Eckman, Joe</creatorcontrib><creatorcontrib>Fan, Jianmei</creatorcontrib><creatorcontrib>Fekete, Alex</creatorcontrib><creatorcontrib>Firestone, Brant</creatorcontrib><creatorcontrib>Flynn, Julie</creatorcontrib><creatorcontrib>Green, Jack</creatorcontrib><creatorcontrib>Growney, Joseph D</creatorcontrib><creatorcontrib>Holmqvist, Mats</creatorcontrib><creatorcontrib>Hsu, Meier</creatorcontrib><creatorcontrib>Jansson, Daniel</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Kwon, Paul</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lombardo, Franco</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Majumdar, Dyuti</creatorcontrib><creatorcontrib>Meta, Christopher</creatorcontrib><creatorcontrib>Perez, Lawrence</creatorcontrib><creatorcontrib>Pu, Minying</creatorcontrib><creatorcontrib>Ramsey, Tim</creatorcontrib><creatorcontrib>Remiszewski, Stacy</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Traebert, Martin</creatorcontrib><creatorcontrib>Urban, Laszlo</creatorcontrib><creatorcontrib>Uttamsingh, Vinita</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Whitebread, Steven</creatorcontrib><creatorcontrib>Whitehead, Lewis</creatorcontrib><creatorcontrib>Yan-Neale, Yan</creatorcontrib><creatorcontrib>Yao, Yung-Mae</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Atadja, Peter</creatorcontrib><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</description><subject>Acrylamides - chemical synthesis</subject><subject>Acrylamides - pharmacology</subject><subject>Acrylamides - toxicity</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - toxicity</subject><subject>Drug Screening Assays, Antitumor</subject><subject>ERG1 Potassium Channel</subject><subject>Ether-A-Go-Go Potassium Channels - antagonists & inhibitors</subject><subject>Half-Life</subject><subject>HCT116 Cells</subject><subject>Histone Deacetylase Inhibitors - chemical synthesis</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylase Inhibitors - toxicity</subject><subject>Humans</subject><subject>Hydroxamic Acids - chemical synthesis</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Hydroxamic Acids - toxicity</subject><subject>In Vitro Techniques</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microsomes, Liver - metabolism</subject><subject>Models, Molecular</subject><subject>Neoplasm Transplantation</subject><subject>Patch-Clamp Techniques</subject><subject>Radioligand Assay</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereoisomerism</subject><subject>Structure-Activity Relationship</subject><subject>Tissue Distribution</subject><subject>Transplantation, Heterologous</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKAzEUBuAgiq3VhS8g2Yi4GE1OMrel1ksLhS68bIdMkqEpnUlNMmB9elNau3J14JyPH86P0CUld5QAvV-2QAgrCn2EhjQFkvCC8GM0JAQggQzYAJ15vyQRUWCnaAA0S-ONDlE1XwfTmh8RjO2wbXBYaGw6_GmCs3gsnDJC4jfR6LDZnicb5ey3aEXQyaPwWuGJ8cF2Gj9pISNaxSWedgtTm2CdP0cnjVh5fbGfI_Tx8vw-niSz-et0_DBLBKM8JFDqEnRZZGkTR84Iq4GzgvE6lWmmal5mRGnJKSFZCg3Ps7wpQbJaSVAAKRuhm13u2tmvXvtQtcZLvVqJTtveV0We5rQoGYvydiels9473VRrZ1rhNhUl1bbO6lBntFf71L5utTrIv_4iuN4BIX21tL3r4pP_BP0CY1l67A</recordid><startdate>20110714</startdate><enddate>20110714</enddate><creator>Shultz, Michael D</creator><creator>Cao, Xueying</creator><creator>Chen, Christine H</creator><creator>Cho, Young Shin</creator><creator>Davis, Nicole R</creator><creator>Eckman, Joe</creator><creator>Fan, Jianmei</creator><creator>Fekete, Alex</creator><creator>Firestone, Brant</creator><creator>Flynn, Julie</creator><creator>Green, Jack</creator><creator>Growney, Joseph D</creator><creator>Holmqvist, Mats</creator><creator>Hsu, Meier</creator><creator>Jansson, Daniel</creator><creator>Jiang, Lei</creator><creator>Kwon, Paul</creator><creator>Liu, Gang</creator><creator>Lombardo, Franco</creator><creator>Lu, Qiang</creator><creator>Majumdar, Dyuti</creator><creator>Meta, Christopher</creator><creator>Perez, Lawrence</creator><creator>Pu, Minying</creator><creator>Ramsey, Tim</creator><creator>Remiszewski, Stacy</creator><creator>Skolnik, Suzanne</creator><creator>Traebert, Martin</creator><creator>Urban, Laszlo</creator><creator>Uttamsingh, Vinita</creator><creator>Wang, Ping</creator><creator>Whitebread, Steven</creator><creator>Whitehead, Lewis</creator><creator>Yan-Neale, Yan</creator><creator>Yao, Yung-Mae</creator><creator>Zhou, Liping</creator><creator>Atadja, Peter</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110714</creationdate><title>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</title><author>Shultz, Michael D ; Cao, Xueying ; Chen, Christine H ; Cho, Young Shin ; Davis, Nicole R ; Eckman, Joe ; Fan, Jianmei ; Fekete, Alex ; Firestone, Brant ; Flynn, Julie ; Green, Jack ; Growney, Joseph D ; Holmqvist, Mats ; Hsu, Meier ; Jansson, Daniel ; Jiang, Lei ; Kwon, Paul ; Liu, Gang ; Lombardo, Franco ; Lu, Qiang ; Majumdar, Dyuti ; Meta, Christopher ; Perez, Lawrence ; Pu, Minying ; Ramsey, Tim ; Remiszewski, Stacy ; Skolnik, Suzanne ; Traebert, Martin ; Urban, Laszlo ; Uttamsingh, Vinita ; Wang, Ping ; Whitebread, Steven ; Whitehead, Lewis ; Yan-Neale, Yan ; Yao, Yung-Mae ; Zhou, Liping ; Atadja, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-29e92e9865f2e97303b243834b5c56db4960dec4100652f4767f92c3bdc2d2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylamides - chemical synthesis</topic><topic>Acrylamides - pharmacology</topic><topic>Acrylamides - toxicity</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - toxicity</topic><topic>Drug Screening Assays, Antitumor</topic><topic>ERG1 Potassium Channel</topic><topic>Ether-A-Go-Go Potassium Channels - antagonists & inhibitors</topic><topic>Half-Life</topic><topic>HCT116 Cells</topic><topic>Histone Deacetylase Inhibitors - chemical synthesis</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylase Inhibitors - toxicity</topic><topic>Humans</topic><topic>Hydroxamic Acids - chemical synthesis</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Hydroxamic Acids - toxicity</topic><topic>In Vitro Techniques</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microsomes, Liver - metabolism</topic><topic>Models, Molecular</topic><topic>Neoplasm Transplantation</topic><topic>Patch-Clamp Techniques</topic><topic>Radioligand Assay</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereoisomerism</topic><topic>Structure-Activity Relationship</topic><topic>Tissue Distribution</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shultz, Michael D</creatorcontrib><creatorcontrib>Cao, Xueying</creatorcontrib><creatorcontrib>Chen, Christine H</creatorcontrib><creatorcontrib>Cho, Young Shin</creatorcontrib><creatorcontrib>Davis, Nicole R</creatorcontrib><creatorcontrib>Eckman, Joe</creatorcontrib><creatorcontrib>Fan, Jianmei</creatorcontrib><creatorcontrib>Fekete, Alex</creatorcontrib><creatorcontrib>Firestone, Brant</creatorcontrib><creatorcontrib>Flynn, Julie</creatorcontrib><creatorcontrib>Green, Jack</creatorcontrib><creatorcontrib>Growney, Joseph D</creatorcontrib><creatorcontrib>Holmqvist, Mats</creatorcontrib><creatorcontrib>Hsu, Meier</creatorcontrib><creatorcontrib>Jansson, Daniel</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Kwon, Paul</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Lombardo, Franco</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Majumdar, Dyuti</creatorcontrib><creatorcontrib>Meta, Christopher</creatorcontrib><creatorcontrib>Perez, Lawrence</creatorcontrib><creatorcontrib>Pu, Minying</creatorcontrib><creatorcontrib>Ramsey, Tim</creatorcontrib><creatorcontrib>Remiszewski, Stacy</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Traebert, Martin</creatorcontrib><creatorcontrib>Urban, Laszlo</creatorcontrib><creatorcontrib>Uttamsingh, Vinita</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Whitebread, Steven</creatorcontrib><creatorcontrib>Whitehead, Lewis</creatorcontrib><creatorcontrib>Yan-Neale, Yan</creatorcontrib><creatorcontrib>Yao, Yung-Mae</creatorcontrib><creatorcontrib>Zhou, Liping</creatorcontrib><creatorcontrib>Atadja, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shultz, Michael D</au><au>Cao, Xueying</au><au>Chen, Christine H</au><au>Cho, Young Shin</au><au>Davis, Nicole R</au><au>Eckman, Joe</au><au>Fan, Jianmei</au><au>Fekete, Alex</au><au>Firestone, Brant</au><au>Flynn, Julie</au><au>Green, Jack</au><au>Growney, Joseph D</au><au>Holmqvist, Mats</au><au>Hsu, Meier</au><au>Jansson, Daniel</au><au>Jiang, Lei</au><au>Kwon, Paul</au><au>Liu, Gang</au><au>Lombardo, Franco</au><au>Lu, Qiang</au><au>Majumdar, Dyuti</au><au>Meta, Christopher</au><au>Perez, Lawrence</au><au>Pu, Minying</au><au>Ramsey, Tim</au><au>Remiszewski, Stacy</au><au>Skolnik, Suzanne</au><au>Traebert, Martin</au><au>Urban, Laszlo</au><au>Uttamsingh, Vinita</au><au>Wang, Ping</au><au>Whitebread, Steven</au><au>Whitehead, Lewis</au><au>Yan-Neale, Yan</au><au>Yao, Yung-Mae</au><au>Zhou, Liping</au><au>Atadja, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2011-07-14</date><risdate>2011</risdate><volume>54</volume><issue>13</issue><spage>4752</spage><epage>4772</epage><pages>4752-4772</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21650221</pmid><doi>10.1021/jm200388e</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2011-07, Vol.54 (13), p.4752-4772 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_875718933 |
source | MEDLINE; American Chemical Society Journals |
subjects | Acrylamides - chemical synthesis Acrylamides - pharmacology Acrylamides - toxicity Animals Antineoplastic Agents - chemical synthesis Antineoplastic Agents - pharmacology Antineoplastic Agents - toxicity Drug Screening Assays, Antitumor ERG1 Potassium Channel Ether-A-Go-Go Potassium Channels - antagonists & inhibitors Half-Life HCT116 Cells Histone Deacetylase Inhibitors - chemical synthesis Histone Deacetylase Inhibitors - pharmacology Histone Deacetylase Inhibitors - toxicity Humans Hydroxamic Acids - chemical synthesis Hydroxamic Acids - pharmacology Hydroxamic Acids - toxicity In Vitro Techniques Mice Mice, Nude Microsomes, Liver - metabolism Models, Molecular Neoplasm Transplantation Patch-Clamp Techniques Radioligand Assay Rats Rats, Sprague-Dawley Stereoisomerism Structure-Activity Relationship Tissue Distribution Transplantation, Heterologous |
title | Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20in%20Vitro%20Cardiac%20Safety%20of%20Hydroxamate-Based%20Histone%20Deacetylase%20Inhibitors&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Shultz,%20Michael%20D&rft.date=2011-07-14&rft.volume=54&rft.issue=13&rft.spage=4752&rft.epage=4772&rft.pages=4752-4772&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/jm200388e&rft_dat=%3Cproquest_cross%3E875718933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875718933&rft_id=info:pmid/21650221&rfr_iscdi=true |