SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo

VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. In this investigati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2011-07, Vol.17 (13), p.4439-4450
Hauptverfasser: Zhang, Shuang, Cao, Zhixing, Tian, Hongwei, Shen, Guobo, Ma, Yongping, Xie, Huanzhang, Liu, Yalin, Zhao, Chengjian, Deng, Senyi, Yang, Yang, Zheng, Renlin, Li, Weiwei, Zhang, Na, Liu, Shengyong, Wang, Wei, Dai, Lixia, Shi, Shuai, Cheng, Lin, Pan, Youli, Feng, Shan, Zhao, Xia, Deng, Hongxin, Yang, Shengyong, Wei, Yuquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4450
container_issue 13
container_start_page 4439
container_title Clinical cancer research
container_volume 17
creator Zhang, Shuang
Cao, Zhixing
Tian, Hongwei
Shen, Guobo
Ma, Yongping
Xie, Huanzhang
Liu, Yalin
Zhao, Chengjian
Deng, Senyi
Yang, Yang
Zheng, Renlin
Li, Weiwei
Zhang, Na
Liu, Shengyong
Wang, Wei
Dai, Lixia
Shi, Shuai
Cheng, Lin
Pan, Youli
Feng, Shan
Zhao, Xia
Deng, Hongxin
Yang, Shengyong
Wei, Yuquan
description VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. In this investigation, we adopted a restricted de novo design method to design VEGFR2 inhibitors. We selected the most potent compound SKLB1002 and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro. Tumor xenografts in zebrafish and athymic mice were used to examine the in vivo activity of SKLB1002. The use of the restricted de novo design method indeed led to a new potent VEGFR2 inhibitor, SKLB1002, which could significantly inhibit HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis was conducted, which indicated that SKLB1002 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal-regulated kinase, focal adhesion kinase, and Src. In vivo zebrafish model experiments showed that SKLB1002 remarkably blocked the formation of intersegmental vessels in zebrafish embryos. It was further found to inhibit a new microvasculature in zebrafish embryos induced by inoculated tumor cells. Finally, compared with the solvent control, administration of 100 mg/kg/d SKLB1002 reached more than 60% inhibition against human tumor xenografts in athymic mice. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. Our findings suggest that SKLB1002 inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.
doi_str_mv 10.1158/1078-0432.ccr-10-3109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875717915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875717915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d0eba5e129584d1a0972d89030be7babc002e823ff0779797599a7b3d02f318d3</originalsourceid><addsrcrecordid>eNpFkE1PGzEQQC1EVSjtT6DyBfXCwoy9xusjRCRERLQCynXl9XqDq40d7A1V_z1ekVDNYUajNx96hBwjnCGK6hxBVgWUnJ0ZEwuEgiOoPXKIQsiCswuxn-sdc0C-pPQHAEuE8jM5YHjBmGRwSMLD7eIKAdgp1fQuvNqe_gqD9QOd-2fXuCFEGjr6dD2b0ntr7HpsMPrgll73zi9Pd1yil37pwtJ6m1yi2rf0cbPK8CyGv8NzxuiTew1fyadO98l-2-Yj8nt6_Ti5KRY_Z_PJ5aIwpcChaME2WlhkSlRlixqUZG2lgENjZaMbkz-2FeNdB1KqHEIpLRveAus4Vi0_Ij_e965jeNnYNNQrl4zte-1t2KS6kkKiVCgyKd5JE0NK0Xb1OrqVjv9qhHpUXY8a61FjPZncj91RdZ77vr2waVa2_Zjauc3AyRbQyei-i9obl_5zJecqP8_fAFTehKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875717915</pqid></control><display><type>article</type><title>SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Shuang ; Cao, Zhixing ; Tian, Hongwei ; Shen, Guobo ; Ma, Yongping ; Xie, Huanzhang ; Liu, Yalin ; Zhao, Chengjian ; Deng, Senyi ; Yang, Yang ; Zheng, Renlin ; Li, Weiwei ; Zhang, Na ; Liu, Shengyong ; Wang, Wei ; Dai, Lixia ; Shi, Shuai ; Cheng, Lin ; Pan, Youli ; Feng, Shan ; Zhao, Xia ; Deng, Hongxin ; Yang, Shengyong ; Wei, Yuquan</creator><creatorcontrib>Zhang, Shuang ; Cao, Zhixing ; Tian, Hongwei ; Shen, Guobo ; Ma, Yongping ; Xie, Huanzhang ; Liu, Yalin ; Zhao, Chengjian ; Deng, Senyi ; Yang, Yang ; Zheng, Renlin ; Li, Weiwei ; Zhang, Na ; Liu, Shengyong ; Wang, Wei ; Dai, Lixia ; Shi, Shuai ; Cheng, Lin ; Pan, Youli ; Feng, Shan ; Zhao, Xia ; Deng, Hongxin ; Yang, Shengyong ; Wei, Yuquan</creatorcontrib><description>VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. In this investigation, we adopted a restricted de novo design method to design VEGFR2 inhibitors. We selected the most potent compound SKLB1002 and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro. Tumor xenografts in zebrafish and athymic mice were used to examine the in vivo activity of SKLB1002. The use of the restricted de novo design method indeed led to a new potent VEGFR2 inhibitor, SKLB1002, which could significantly inhibit HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis was conducted, which indicated that SKLB1002 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal-regulated kinase, focal adhesion kinase, and Src. In vivo zebrafish model experiments showed that SKLB1002 remarkably blocked the formation of intersegmental vessels in zebrafish embryos. It was further found to inhibit a new microvasculature in zebrafish embryos induced by inoculated tumor cells. Finally, compared with the solvent control, administration of 100 mg/kg/d SKLB1002 reached more than 60% inhibition against human tumor xenografts in athymic mice. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. Our findings suggest that SKLB1002 inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.ccr-10-3109</identifier><identifier>PMID: 21622720</identifier><identifier>CODEN: CCREF4</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Angiogenesis Inhibitors - chemical synthesis ; Angiogenesis Inhibitors - chemistry ; Angiogenesis Inhibitors - pharmacology ; Angiogenesis Inhibitors - therapeutic use ; Angiogenesis Inhibitors - toxicity ; Animals ; Antineoplastic agents ; Apoptosis - drug effects ; Biological and medical sciences ; Cell Line ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Endothelial Cells - drug effects ; Female ; General pharmacology ; Hep G2 Cells ; Humans ; Medical sciences ; Melanoma, Experimental ; Mice ; Mice, Nude ; Neoplasm Invasiveness ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Neovascularization, Pathologic ; Neovascularization, Physiologic - drug effects ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Quinazolines - chemical synthesis ; Quinazolines - chemistry ; Quinazolines - pharmacology ; Quinazolines - therapeutic use ; Signal Transduction - drug effects ; Thiadiazoles - chemical synthesis ; Thiadiazoles - chemistry ; Thiadiazoles - pharmacology ; Thiadiazoles - therapeutic use ; Tumor Burden - drug effects ; Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Xenograft Model Antitumor Assays ; Zebrafish - embryology</subject><ispartof>Clinical cancer research, 2011-07, Vol.17 (13), p.4439-4450</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d0eba5e129584d1a0972d89030be7babc002e823ff0779797599a7b3d02f318d3</citedby><cites>FETCH-LOGICAL-c451t-d0eba5e129584d1a0972d89030be7babc002e823ff0779797599a7b3d02f318d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24339779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21622720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Cao, Zhixing</creatorcontrib><creatorcontrib>Tian, Hongwei</creatorcontrib><creatorcontrib>Shen, Guobo</creatorcontrib><creatorcontrib>Ma, Yongping</creatorcontrib><creatorcontrib>Xie, Huanzhang</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Zhao, Chengjian</creatorcontrib><creatorcontrib>Deng, Senyi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zheng, Renlin</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Liu, Shengyong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Dai, Lixia</creatorcontrib><creatorcontrib>Shi, Shuai</creatorcontrib><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Pan, Youli</creatorcontrib><creatorcontrib>Feng, Shan</creatorcontrib><creatorcontrib>Zhao, Xia</creatorcontrib><creatorcontrib>Deng, Hongxin</creatorcontrib><creatorcontrib>Yang, Shengyong</creatorcontrib><creatorcontrib>Wei, Yuquan</creatorcontrib><title>SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. In this investigation, we adopted a restricted de novo design method to design VEGFR2 inhibitors. We selected the most potent compound SKLB1002 and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro. Tumor xenografts in zebrafish and athymic mice were used to examine the in vivo activity of SKLB1002. The use of the restricted de novo design method indeed led to a new potent VEGFR2 inhibitor, SKLB1002, which could significantly inhibit HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis was conducted, which indicated that SKLB1002 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal-regulated kinase, focal adhesion kinase, and Src. In vivo zebrafish model experiments showed that SKLB1002 remarkably blocked the formation of intersegmental vessels in zebrafish embryos. It was further found to inhibit a new microvasculature in zebrafish embryos induced by inoculated tumor cells. Finally, compared with the solvent control, administration of 100 mg/kg/d SKLB1002 reached more than 60% inhibition against human tumor xenografts in athymic mice. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. Our findings suggest that SKLB1002 inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.</description><subject>Angiogenesis Inhibitors - chemical synthesis</subject><subject>Angiogenesis Inhibitors - chemistry</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Angiogenesis Inhibitors - toxicity</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Apoptosis - drug effects</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Endothelial Cells - drug effects</subject><subject>Female</subject><subject>General pharmacology</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Melanoma, Experimental</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Quinazolines - chemical synthesis</subject><subject>Quinazolines - chemistry</subject><subject>Quinazolines - pharmacology</subject><subject>Quinazolines - therapeutic use</subject><subject>Signal Transduction - drug effects</subject><subject>Thiadiazoles - chemical synthesis</subject><subject>Thiadiazoles - chemistry</subject><subject>Thiadiazoles - pharmacology</subject><subject>Thiadiazoles - therapeutic use</subject><subject>Tumor Burden - drug effects</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Zebrafish - embryology</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PGzEQQC1EVSjtT6DyBfXCwoy9xusjRCRERLQCynXl9XqDq40d7A1V_z1ekVDNYUajNx96hBwjnCGK6hxBVgWUnJ0ZEwuEgiOoPXKIQsiCswuxn-sdc0C-pPQHAEuE8jM5YHjBmGRwSMLD7eIKAdgp1fQuvNqe_gqD9QOd-2fXuCFEGjr6dD2b0ntr7HpsMPrgll73zi9Pd1yil37pwtJ6m1yi2rf0cbPK8CyGv8NzxuiTew1fyadO98l-2-Yj8nt6_Ti5KRY_Z_PJ5aIwpcChaME2WlhkSlRlixqUZG2lgENjZaMbkz-2FeNdB1KqHEIpLRveAus4Vi0_Ij_e965jeNnYNNQrl4zte-1t2KS6kkKiVCgyKd5JE0NK0Xb1OrqVjv9qhHpUXY8a61FjPZncj91RdZ77vr2waVa2_Zjauc3AyRbQyei-i9obl_5zJecqP8_fAFTehKE</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Zhang, Shuang</creator><creator>Cao, Zhixing</creator><creator>Tian, Hongwei</creator><creator>Shen, Guobo</creator><creator>Ma, Yongping</creator><creator>Xie, Huanzhang</creator><creator>Liu, Yalin</creator><creator>Zhao, Chengjian</creator><creator>Deng, Senyi</creator><creator>Yang, Yang</creator><creator>Zheng, Renlin</creator><creator>Li, Weiwei</creator><creator>Zhang, Na</creator><creator>Liu, Shengyong</creator><creator>Wang, Wei</creator><creator>Dai, Lixia</creator><creator>Shi, Shuai</creator><creator>Cheng, Lin</creator><creator>Pan, Youli</creator><creator>Feng, Shan</creator><creator>Zhao, Xia</creator><creator>Deng, Hongxin</creator><creator>Yang, Shengyong</creator><creator>Wei, Yuquan</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo</title><author>Zhang, Shuang ; Cao, Zhixing ; Tian, Hongwei ; Shen, Guobo ; Ma, Yongping ; Xie, Huanzhang ; Liu, Yalin ; Zhao, Chengjian ; Deng, Senyi ; Yang, Yang ; Zheng, Renlin ; Li, Weiwei ; Zhang, Na ; Liu, Shengyong ; Wang, Wei ; Dai, Lixia ; Shi, Shuai ; Cheng, Lin ; Pan, Youli ; Feng, Shan ; Zhao, Xia ; Deng, Hongxin ; Yang, Shengyong ; Wei, Yuquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d0eba5e129584d1a0972d89030be7babc002e823ff0779797599a7b3d02f318d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis Inhibitors - chemical synthesis</topic><topic>Angiogenesis Inhibitors - chemistry</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Angiogenesis Inhibitors - toxicity</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Apoptosis - drug effects</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Endothelial Cells - drug effects</topic><topic>Female</topic><topic>General pharmacology</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Melanoma, Experimental</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Quinazolines - chemical synthesis</topic><topic>Quinazolines - chemistry</topic><topic>Quinazolines - pharmacology</topic><topic>Quinazolines - therapeutic use</topic><topic>Signal Transduction - drug effects</topic><topic>Thiadiazoles - chemical synthesis</topic><topic>Thiadiazoles - chemistry</topic><topic>Thiadiazoles - pharmacology</topic><topic>Thiadiazoles - therapeutic use</topic><topic>Tumor Burden - drug effects</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Cao, Zhixing</creatorcontrib><creatorcontrib>Tian, Hongwei</creatorcontrib><creatorcontrib>Shen, Guobo</creatorcontrib><creatorcontrib>Ma, Yongping</creatorcontrib><creatorcontrib>Xie, Huanzhang</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Zhao, Chengjian</creatorcontrib><creatorcontrib>Deng, Senyi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zheng, Renlin</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Liu, Shengyong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Dai, Lixia</creatorcontrib><creatorcontrib>Shi, Shuai</creatorcontrib><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>Pan, Youli</creatorcontrib><creatorcontrib>Feng, Shan</creatorcontrib><creatorcontrib>Zhao, Xia</creatorcontrib><creatorcontrib>Deng, Hongxin</creatorcontrib><creatorcontrib>Yang, Shengyong</creatorcontrib><creatorcontrib>Wei, Yuquan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuang</au><au>Cao, Zhixing</au><au>Tian, Hongwei</au><au>Shen, Guobo</au><au>Ma, Yongping</au><au>Xie, Huanzhang</au><au>Liu, Yalin</au><au>Zhao, Chengjian</au><au>Deng, Senyi</au><au>Yang, Yang</au><au>Zheng, Renlin</au><au>Li, Weiwei</au><au>Zhang, Na</au><au>Liu, Shengyong</au><au>Wang, Wei</au><au>Dai, Lixia</au><au>Shi, Shuai</au><au>Cheng, Lin</au><au>Pan, Youli</au><au>Feng, Shan</au><au>Zhao, Xia</au><au>Deng, Hongxin</au><au>Yang, Shengyong</au><au>Wei, Yuquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>17</volume><issue>13</issue><spage>4439</spage><epage>4450</epage><pages>4439-4450</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><coden>CCREF4</coden><abstract>VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. In this investigation, we adopted a restricted de novo design method to design VEGFR2 inhibitors. We selected the most potent compound SKLB1002 and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro. Tumor xenografts in zebrafish and athymic mice were used to examine the in vivo activity of SKLB1002. The use of the restricted de novo design method indeed led to a new potent VEGFR2 inhibitor, SKLB1002, which could significantly inhibit HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis was conducted, which indicated that SKLB1002 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal-regulated kinase, focal adhesion kinase, and Src. In vivo zebrafish model experiments showed that SKLB1002 remarkably blocked the formation of intersegmental vessels in zebrafish embryos. It was further found to inhibit a new microvasculature in zebrafish embryos induced by inoculated tumor cells. Finally, compared with the solvent control, administration of 100 mg/kg/d SKLB1002 reached more than 60% inhibition against human tumor xenografts in athymic mice. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. Our findings suggest that SKLB1002 inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21622720</pmid><doi>10.1158/1078-0432.ccr-10-3109</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2011-07, Vol.17 (13), p.4439-4450
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_875717915
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Angiogenesis Inhibitors - chemical synthesis
Angiogenesis Inhibitors - chemistry
Angiogenesis Inhibitors - pharmacology
Angiogenesis Inhibitors - therapeutic use
Angiogenesis Inhibitors - toxicity
Animals
Antineoplastic agents
Apoptosis - drug effects
Biological and medical sciences
Cell Line
Cell Line, Tumor
Cell Movement - drug effects
Cell Proliferation - drug effects
Endothelial Cells - drug effects
Female
General pharmacology
Hep G2 Cells
Humans
Medical sciences
Melanoma, Experimental
Mice
Mice, Nude
Neoplasm Invasiveness
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Neovascularization, Pathologic
Neovascularization, Physiologic - drug effects
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Quinazolines - chemical synthesis
Quinazolines - chemistry
Quinazolines - pharmacology
Quinazolines - therapeutic use
Signal Transduction - drug effects
Thiadiazoles - chemical synthesis
Thiadiazoles - chemistry
Thiadiazoles - pharmacology
Thiadiazoles - therapeutic use
Tumor Burden - drug effects
Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Xenograft Model Antitumor Assays
Zebrafish - embryology
title SKLB1002, a Novel Potent Inhibitor of VEGF Receptor 2 Signaling, Inhibits Angiogenesis and Tumor Growth In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SKLB1002,%20a%20Novel%20Potent%20Inhibitor%20of%20VEGF%20Receptor%202%20Signaling,%20Inhibits%20Angiogenesis%20and%20Tumor%20Growth%20In%20Vivo&rft.jtitle=Clinical%20cancer%20research&rft.au=Zhang,%20Shuang&rft.date=2011-07-01&rft.volume=17&rft.issue=13&rft.spage=4439&rft.epage=4450&rft.pages=4439-4450&rft.issn=1078-0432&rft.eissn=1557-3265&rft.coden=CCREF4&rft_id=info:doi/10.1158/1078-0432.ccr-10-3109&rft_dat=%3Cproquest_cross%3E875717915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875717915&rft_id=info:pmid/21622720&rfr_iscdi=true