Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems

A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2011-05, Vol.36 (9), p.5500-5511
Hauptverfasser: Esmaeilifar, Ashkan, Yazdanpour, Maryam, Rowshanzamir, Soosan, Eikani, Mohammad H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5511
container_issue 9
container_start_page 5500
container_title International journal of hydrogen energy
container_volume 36
creator Esmaeilifar, Ashkan
Yazdanpour, Maryam
Rowshanzamir, Soosan
Eikani, Mohammad H.
description A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m 2 g −1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm −2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.
doi_str_mv 10.1016/j.ijhydene.2011.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875093736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911003326</els_id><sourcerecordid>875093736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxSMEEkvhKyBfEKek49j5dwOtKEUqbQ-tOFqOPWa9SuKtx4vIt8erLVw5jGYOb968-RXFew4VB95e7iu_360WF6xq4LyCugLevCg2vO-GUsi-e1lsQLRQCj4Mr4s3RHsA3oEcNsXT9WpjSDuMs54YrUseyRMLjt2ny-8_trcPxBa9BBPmQyCfkOGEJsVgdNLTSomYC5EdsklYGP42O738RDbjPEa9IHNHnJjB6WROCWd6W7xyeiJ899wviserLw_b6_Lm7uu37eeb0kjepJJrKXjPR2s7aARvnTHjKDVHVxsYwfFcjbBtK82oZT_aocUB7Sh7qPuxGcRF8fHsm6M9HZGSmj2dguRU4Uiq7xoYRCfarGzPShMDUUSnDtHPOq6KgzohVnv1F7E6IVZQq4w4L354PqHJ6Mnlh42nf9u15EICdFn36azD_O8vj1GR8bgYtD5mlsoG_79TfwDwppiq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875093736</pqid></control><display><type>article</type><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</creator><creatorcontrib>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</creatorcontrib><description>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m 2 g −1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm −2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.02.015</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Catalysts ; Electrocatalyst synthesis ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrothermal method ; Nanomaterials ; Nanoparticles ; Nanostructure ; Optimization ; Platinum ; Proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Pt/CNTs nanocomposite ; Stirring ; Taguchi method</subject><ispartof>International journal of hydrogen energy, 2011-05, Vol.36 (9), p.5500-5511</ispartof><rights>2011 Hydrogen Energy Publications, LLC</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</citedby><cites>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2011.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24134007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esmaeilifar, Ashkan</creatorcontrib><creatorcontrib>Yazdanpour, Maryam</creatorcontrib><creatorcontrib>Rowshanzamir, Soosan</creatorcontrib><creatorcontrib>Eikani, Mohammad H.</creatorcontrib><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><title>International journal of hydrogen energy</title><description>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m 2 g −1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm −2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Electrocatalyst synthesis</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrothermal method</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Pt/CNTs nanocomposite</subject><subject>Stirring</subject><subject>Taguchi method</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxSMEEkvhKyBfEKek49j5dwOtKEUqbQ-tOFqOPWa9SuKtx4vIt8erLVw5jGYOb968-RXFew4VB95e7iu_360WF6xq4LyCugLevCg2vO-GUsi-e1lsQLRQCj4Mr4s3RHsA3oEcNsXT9WpjSDuMs54YrUseyRMLjt2ny-8_trcPxBa9BBPmQyCfkOGEJsVgdNLTSomYC5EdsklYGP42O738RDbjPEa9IHNHnJjB6WROCWd6W7xyeiJ899wviserLw_b6_Lm7uu37eeb0kjepJJrKXjPR2s7aARvnTHjKDVHVxsYwfFcjbBtK82oZT_aocUB7Sh7qPuxGcRF8fHsm6M9HZGSmj2dguRU4Uiq7xoYRCfarGzPShMDUUSnDtHPOq6KgzohVnv1F7E6IVZQq4w4L354PqHJ6Mnlh42nf9u15EICdFn36azD_O8vj1GR8bgYtD5mlsoG_79TfwDwppiq</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Esmaeilifar, Ashkan</creator><creator>Yazdanpour, Maryam</creator><creator>Rowshanzamir, Soosan</creator><creator>Eikani, Mohammad H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><author>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Electrocatalyst synthesis</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrothermal method</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Pt/CNTs nanocomposite</topic><topic>Stirring</topic><topic>Taguchi method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeilifar, Ashkan</creatorcontrib><creatorcontrib>Yazdanpour, Maryam</creatorcontrib><creatorcontrib>Rowshanzamir, Soosan</creatorcontrib><creatorcontrib>Eikani, Mohammad H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeilifar, Ashkan</au><au>Yazdanpour, Maryam</au><au>Rowshanzamir, Soosan</au><au>Eikani, Mohammad H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>36</volume><issue>9</issue><spage>5500</spage><epage>5511</epage><pages>5500-5511</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m 2 g −1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm −2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.02.015</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2011-05, Vol.36 (9), p.5500-5511
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_875093736
source Access via ScienceDirect (Elsevier)
subjects Alternative fuels. Production and utilization
Applied sciences
Catalysts
Electrocatalyst synthesis
Energy
Exact sciences and technology
Fuels
Hydrogen
Hydrothermal method
Nanomaterials
Nanoparticles
Nanostructure
Optimization
Platinum
Proton exchange membrane fuel cell
Proton exchange membrane fuel cells
Pt/CNTs nanocomposite
Stirring
Taguchi method
title Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20of%20Pt/MWCNTs%20nanocomposite%20electrocatalysts%20for%20proton%20exchange%20membrane%20fuel%20cell%20systems&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Esmaeilifar,%20Ashkan&rft.date=2011-05-01&rft.volume=36&rft.issue=9&rft.spage=5500&rft.epage=5511&rft.pages=5500-5511&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.02.015&rft_dat=%3Cproquest_cross%3E875093736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875093736&rft_id=info:pmid/&rft_els_id=S0360319911003326&rfr_iscdi=true