Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems
A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2011-05, Vol.36 (9), p.5500-5511 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5511 |
---|---|
container_issue | 9 |
container_start_page | 5500 |
container_title | International journal of hydrogen energy |
container_volume | 36 |
creator | Esmaeilifar, Ashkan Yazdanpour, Maryam Rowshanzamir, Soosan Eikani, Mohammad H. |
description | A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m
2 g
−1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm
−2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance. |
doi_str_mv | 10.1016/j.ijhydene.2011.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875093736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911003326</els_id><sourcerecordid>875093736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxSMEEkvhKyBfEKek49j5dwOtKEUqbQ-tOFqOPWa9SuKtx4vIt8erLVw5jGYOb968-RXFew4VB95e7iu_360WF6xq4LyCugLevCg2vO-GUsi-e1lsQLRQCj4Mr4s3RHsA3oEcNsXT9WpjSDuMs54YrUseyRMLjt2ny-8_trcPxBa9BBPmQyCfkOGEJsVgdNLTSomYC5EdsklYGP42O738RDbjPEa9IHNHnJjB6WROCWd6W7xyeiJ899wviserLw_b6_Lm7uu37eeb0kjepJJrKXjPR2s7aARvnTHjKDVHVxsYwfFcjbBtK82oZT_aocUB7Sh7qPuxGcRF8fHsm6M9HZGSmj2dguRU4Uiq7xoYRCfarGzPShMDUUSnDtHPOq6KgzohVnv1F7E6IVZQq4w4L354PqHJ6Mnlh42nf9u15EICdFn36azD_O8vj1GR8bgYtD5mlsoG_79TfwDwppiq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875093736</pqid></control><display><type>article</type><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</creator><creatorcontrib>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</creatorcontrib><description>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m
2 g
−1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm
−2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.02.015</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Catalysts ; Electrocatalyst synthesis ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrothermal method ; Nanomaterials ; Nanoparticles ; Nanostructure ; Optimization ; Platinum ; Proton exchange membrane fuel cell ; Proton exchange membrane fuel cells ; Pt/CNTs nanocomposite ; Stirring ; Taguchi method</subject><ispartof>International journal of hydrogen energy, 2011-05, Vol.36 (9), p.5500-5511</ispartof><rights>2011 Hydrogen Energy Publications, LLC</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</citedby><cites>FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2011.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24134007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esmaeilifar, Ashkan</creatorcontrib><creatorcontrib>Yazdanpour, Maryam</creatorcontrib><creatorcontrib>Rowshanzamir, Soosan</creatorcontrib><creatorcontrib>Eikani, Mohammad H.</creatorcontrib><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><title>International journal of hydrogen energy</title><description>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m
2 g
−1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm
−2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Electrocatalyst synthesis</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrothermal method</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Pt/CNTs nanocomposite</subject><subject>Stirring</subject><subject>Taguchi method</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxSMEEkvhKyBfEKek49j5dwOtKEUqbQ-tOFqOPWa9SuKtx4vIt8erLVw5jGYOb968-RXFew4VB95e7iu_360WF6xq4LyCugLevCg2vO-GUsi-e1lsQLRQCj4Mr4s3RHsA3oEcNsXT9WpjSDuMs54YrUseyRMLjt2ny-8_trcPxBa9BBPmQyCfkOGEJsVgdNLTSomYC5EdsklYGP42O738RDbjPEa9IHNHnJjB6WROCWd6W7xyeiJ899wviserLw_b6_Lm7uu37eeb0kjepJJrKXjPR2s7aARvnTHjKDVHVxsYwfFcjbBtK82oZT_aocUB7Sh7qPuxGcRF8fHsm6M9HZGSmj2dguRU4Uiq7xoYRCfarGzPShMDUUSnDtHPOq6KgzohVnv1F7E6IVZQq4w4L354PqHJ6Mnlh42nf9u15EICdFn36azD_O8vj1GR8bgYtD5mlsoG_79TfwDwppiq</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Esmaeilifar, Ashkan</creator><creator>Yazdanpour, Maryam</creator><creator>Rowshanzamir, Soosan</creator><creator>Eikani, Mohammad H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</title><author>Esmaeilifar, Ashkan ; Yazdanpour, Maryam ; Rowshanzamir, Soosan ; Eikani, Mohammad H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1a43181bdd705316fccbb4a1ef2c0b0f1b0f53d664cba48bd96e9edb48028b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Electrocatalyst synthesis</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrothermal method</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Pt/CNTs nanocomposite</topic><topic>Stirring</topic><topic>Taguchi method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeilifar, Ashkan</creatorcontrib><creatorcontrib>Yazdanpour, Maryam</creatorcontrib><creatorcontrib>Rowshanzamir, Soosan</creatorcontrib><creatorcontrib>Eikani, Mohammad H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeilifar, Ashkan</au><au>Yazdanpour, Maryam</au><au>Rowshanzamir, Soosan</au><au>Eikani, Mohammad H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>36</volume><issue>9</issue><spage>5500</spage><epage>5511</epage><pages>5500-5511</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A hydrothermal method for preparation of size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs) has been studied to optimize the effective parameters (temperature, time, pH and stirring rate) using Taguchi method. The synthesized Pt/MWCNTs nanocomposite samples were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence (XRF) analyses to identify mean Pt nanoparticles size and Pt content. The analysis of the primary experimental data and demonstration of the main effect trend of each parameter showed that a reaction temperature of about 140 °C, a reaction period of 5 h, a slightly basic reaction pH (∼9) and a stirring rate of 500 rpm are the optimum process conditions which give a low mean Pt nanoparticles size (2.8 nm) and a high Pt content (19.4 wt.%) simultaneously. Cyclic voltammetry (CV) analysis showed that under optimum conditions the synthesized sample gives a specific surface area of 99 m
2 g
−1. Obtaining the polarization curves for the two fabricated membrane electrode assemblies (MEAs) using the optimized catalyst and a commercial Pt/C catalyst (10 wt.%, Aldrich) with Pt loading of 0.4 mg cm
−2 demonstrated that the catalyst prepared under optimum conditions shows a considerably better performance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.02.015</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2011-05, Vol.36 (9), p.5500-5511 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_875093736 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alternative fuels. Production and utilization Applied sciences Catalysts Electrocatalyst synthesis Energy Exact sciences and technology Fuels Hydrogen Hydrothermal method Nanomaterials Nanoparticles Nanostructure Optimization Platinum Proton exchange membrane fuel cell Proton exchange membrane fuel cells Pt/CNTs nanocomposite Stirring Taguchi method |
title | Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20of%20Pt/MWCNTs%20nanocomposite%20electrocatalysts%20for%20proton%20exchange%20membrane%20fuel%20cell%20systems&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Esmaeilifar,%20Ashkan&rft.date=2011-05-01&rft.volume=36&rft.issue=9&rft.spage=5500&rft.epage=5511&rft.pages=5500-5511&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.02.015&rft_dat=%3Cproquest_cross%3E875093736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875093736&rft_id=info:pmid/&rft_els_id=S0360319911003326&rfr_iscdi=true |