Asymptotics for a free boundary model in price formation

We study the asymptotics for a large time of solutions to a one-dimensional parabolic evolution equation with non-standard measure-valued right hand side, that involves derivatives of the solution computed at a free boundary point. The problem is a particular case of a mean-field free boundary model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-07, Vol.74 (10), p.3269-3294
Hauptverfasser: González, María del Mar, Gualdani, Maria Pia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3294
container_issue 10
container_start_page 3269
container_title Nonlinear analysis
container_volume 74
creator González, María del Mar
Gualdani, Maria Pia
description We study the asymptotics for a large time of solutions to a one-dimensional parabolic evolution equation with non-standard measure-valued right hand side, that involves derivatives of the solution computed at a free boundary point. The problem is a particular case of a mean-field free boundary model proposed by Lasry–Lions on price formation and dynamic equilibria. The main step in the proof is based on the fact that the free boundary disappears in the linearized problem, thus it can be treated as a perturbation through semigroup theory. This requires a delicate choice for the function spaces since higher regularity is needed near the free boundary. We show global existence for solutions with initial data in a small neighborhood of any equilibrium point, and exponential decay towards a stationary state. Moreover, the family of equilibria of the equation is stable, as follows from center manifold theory.
doi_str_mv 10.1016/j.na.2011.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875090842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11000587</els_id><sourcerecordid>875090842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-54a21460f56caba23e78b1571a019288809d7bec771f2683d2e5ebb5473aa8f63</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EEqWwM2ZBTA3Pdhw7bFXFl1SJBSQ2y3GeJVeJXewUqf89qVqxMb3ld3fvjpBbCiUFWj9symBKBpSWwEoAcUZmVEm-EIyKczIDXrOFqOqvS3KV8wYAqOT1jKhl3g_bMY7e5sLFVJjCJcSijbvQmbQvhthhX_hQbJO3eEAGM_oYrsmFM33Gm9Odk8_np4_V62L9_vK2Wq4XljdqnCINo1UNTtTWtIZxlKqlQlIDtGFKKWg62aKVkjpWK94xFNi2opLcGOVqPif3R99tit87zKMefLbY9yZg3GWtpIAGVMUmEo6kTTHnhE5PLw9TB01BHzbSGx2MPmykgelpo0lydzI32ZreJROsz386VlHgXFQT93jkcGr64zHpbD0Gi51PaEfdRf9_yC_lw3nD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875090842</pqid></control><display><type>article</type><title>Asymptotics for a free boundary model in price formation</title><source>Access via ScienceDirect (Elsevier)</source><creator>González, María del Mar ; Gualdani, Maria Pia</creator><creatorcontrib>González, María del Mar ; Gualdani, Maria Pia</creatorcontrib><description>We study the asymptotics for a large time of solutions to a one-dimensional parabolic evolution equation with non-standard measure-valued right hand side, that involves derivatives of the solution computed at a free boundary point. The problem is a particular case of a mean-field free boundary model proposed by Lasry–Lions on price formation and dynamic equilibria. The main step in the proof is based on the fact that the free boundary disappears in the linearized problem, thus it can be treated as a perturbation through semigroup theory. This requires a delicate choice for the function spaces since higher regularity is needed near the free boundary. We show global existence for solutions with initial data in a small neighborhood of any equilibrium point, and exponential decay towards a stationary state. Moreover, the family of equilibria of the equation is stable, as follows from center manifold theory.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.02.005</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Asymptotic properties ; Asymptotics ; Center manifold ; Decay ; Derivatives ; Evolution ; Exact sciences and technology ; Free boundaries ; Free boundary ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Mathematical analysis ; Mathematical models ; Mathematics ; Partial differential equations ; Perturbation methods ; Price formation ; Reaction–diffusion ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2011-07, Vol.74 (10), p.3269-3294</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-54a21460f56caba23e78b1571a019288809d7bec771f2683d2e5ebb5473aa8f63</citedby><cites>FETCH-LOGICAL-c398t-54a21460f56caba23e78b1571a019288809d7bec771f2683d2e5ebb5473aa8f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2011.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24103354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>González, María del Mar</creatorcontrib><creatorcontrib>Gualdani, Maria Pia</creatorcontrib><title>Asymptotics for a free boundary model in price formation</title><title>Nonlinear analysis</title><description>We study the asymptotics for a large time of solutions to a one-dimensional parabolic evolution equation with non-standard measure-valued right hand side, that involves derivatives of the solution computed at a free boundary point. The problem is a particular case of a mean-field free boundary model proposed by Lasry–Lions on price formation and dynamic equilibria. The main step in the proof is based on the fact that the free boundary disappears in the linearized problem, thus it can be treated as a perturbation through semigroup theory. This requires a delicate choice for the function spaces since higher regularity is needed near the free boundary. We show global existence for solutions with initial data in a small neighborhood of any equilibrium point, and exponential decay towards a stationary state. Moreover, the family of equilibria of the equation is stable, as follows from center manifold theory.</description><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Center manifold</subject><subject>Decay</subject><subject>Derivatives</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Free boundaries</subject><subject>Free boundary</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Perturbation methods</subject><subject>Price formation</subject><subject>Reaction–diffusion</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EEqWwM2ZBTA3Pdhw7bFXFl1SJBSQ2y3GeJVeJXewUqf89qVqxMb3ld3fvjpBbCiUFWj9symBKBpSWwEoAcUZmVEm-EIyKczIDXrOFqOqvS3KV8wYAqOT1jKhl3g_bMY7e5sLFVJjCJcSijbvQmbQvhthhX_hQbJO3eEAGM_oYrsmFM33Gm9Odk8_np4_V62L9_vK2Wq4XljdqnCINo1UNTtTWtIZxlKqlQlIDtGFKKWg62aKVkjpWK94xFNi2opLcGOVqPif3R99tit87zKMefLbY9yZg3GWtpIAGVMUmEo6kTTHnhE5PLw9TB01BHzbSGx2MPmykgelpo0lydzI32ZreJROsz386VlHgXFQT93jkcGr64zHpbD0Gi51PaEfdRf9_yC_lw3nD</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>González, María del Mar</creator><creator>Gualdani, Maria Pia</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Asymptotics for a free boundary model in price formation</title><author>González, María del Mar ; Gualdani, Maria Pia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-54a21460f56caba23e78b1571a019288809d7bec771f2683d2e5ebb5473aa8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Center manifold</topic><topic>Decay</topic><topic>Derivatives</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Free boundaries</topic><topic>Free boundary</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Perturbation methods</topic><topic>Price formation</topic><topic>Reaction–diffusion</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, María del Mar</creatorcontrib><creatorcontrib>Gualdani, Maria Pia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, María del Mar</au><au>Gualdani, Maria Pia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics for a free boundary model in price formation</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>74</volume><issue>10</issue><spage>3269</spage><epage>3294</epage><pages>3269-3294</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We study the asymptotics for a large time of solutions to a one-dimensional parabolic evolution equation with non-standard measure-valued right hand side, that involves derivatives of the solution computed at a free boundary point. The problem is a particular case of a mean-field free boundary model proposed by Lasry–Lions on price formation and dynamic equilibria. The main step in the proof is based on the fact that the free boundary disappears in the linearized problem, thus it can be treated as a perturbation through semigroup theory. This requires a delicate choice for the function spaces since higher regularity is needed near the free boundary. We show global existence for solutions with initial data in a small neighborhood of any equilibrium point, and exponential decay towards a stationary state. Moreover, the family of equilibria of the equation is stable, as follows from center manifold theory.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.02.005</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2011-07, Vol.74 (10), p.3269-3294
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_875090842
source Access via ScienceDirect (Elsevier)
subjects Asymptotic properties
Asymptotics
Center manifold
Decay
Derivatives
Evolution
Exact sciences and technology
Free boundaries
Free boundary
Global analysis, analysis on manifolds
Group theory
Group theory and generalizations
Mathematical analysis
Mathematical models
Mathematics
Partial differential equations
Perturbation methods
Price formation
Reaction–diffusion
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Asymptotics for a free boundary model in price formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20for%20a%20free%20boundary%20model%20in%20price%20formation&rft.jtitle=Nonlinear%20analysis&rft.au=Gonz%C3%A1lez,%20Mar%C3%ADa%20del%20Mar&rft.date=2011-07-01&rft.volume=74&rft.issue=10&rft.spage=3269&rft.epage=3294&rft.pages=3269-3294&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.02.005&rft_dat=%3Cproquest_cross%3E875090842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875090842&rft_id=info:pmid/&rft_els_id=S0362546X11000587&rfr_iscdi=true