Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias

Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2008-03, Vol.27 (3), p.481-494
Hauptverfasser: Kulkarni, S.H., Sylvester, D.M., Blaauw, D.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 3
container_start_page 481
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 27
creator Kulkarni, S.H.
Sylvester, D.M.
Blaauw, D.T.
description Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.
doi_str_mv 10.1109/TCAD.2008.915529
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875076850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4454014</ieee_id><sourcerecordid>875076850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpfgxVPqbDLJbo798AsKLRjPS7qdLVvyUbOJUH-9WyIePA0Dz_sy8zB2y2HCOWSP-Xy6mEQAcpLxJImyMzbiWSxC5Ak_ZyOIhAwBBFyyK-f2ABw9NGLrBTm7q8PcVhSsDp2t7HfR2aYOGhOsG9eF77a02u95X9M2mNtW97ZzwYez9S6Ybguf-aJg1myPwcwW7ppdmKJ0dPM7xyx_fsrnr-Fy9fI2ny5DHUvZhVpyDZnZmISKqCCQmcEEY8IUyGxSFBsUXEQoBM8iTIUxGpMUETmhTHU8Zg9D7aFtPntynaqs01SWRU1N75QUCYhUJuDJ-3_kvunb2t-mZBqJFDJED8EA6bZxriWjDq2tivaoOKiTX3Xyq05-1eDXR-6GiCWiPxz9F95t_ANBQnTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862760944</pqid></control><display><type>article</type><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><source>IEEE Electronic Library (IEL)</source><creator>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</creator><creatorcontrib>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</creatorcontrib><description>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2008.915529</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive body bias (ABB) ; Bias ; Circuit optimization ; Circuits ; Delay ; Design engineering ; Design optimization ; Drives ; Gates (circuits) ; Manufacturing ; Optimization ; post-silicon tuning ; Probability distribution ; RLC circuits ; Sampling methods ; Standard deviation ; Studies ; Threshold voltage ; Tuning ; variability ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2008-03, Vol.27 (3), p.481-494</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</citedby><cites>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4454014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4454014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulkarni, S.H.</creatorcontrib><creatorcontrib>Sylvester, D.M.</creatorcontrib><creatorcontrib>Blaauw, D.T.</creatorcontrib><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</description><subject>Adaptive body bias (ABB)</subject><subject>Bias</subject><subject>Circuit optimization</subject><subject>Circuits</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Drives</subject><subject>Gates (circuits)</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>post-silicon tuning</subject><subject>Probability distribution</subject><subject>RLC circuits</subject><subject>Sampling methods</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Threshold voltage</subject><subject>Tuning</subject><subject>variability</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpfgxVPqbDLJbo798AsKLRjPS7qdLVvyUbOJUH-9WyIePA0Dz_sy8zB2y2HCOWSP-Xy6mEQAcpLxJImyMzbiWSxC5Ak_ZyOIhAwBBFyyK-f2ABw9NGLrBTm7q8PcVhSsDp2t7HfR2aYOGhOsG9eF77a02u95X9M2mNtW97ZzwYez9S6Ybguf-aJg1myPwcwW7ppdmKJ0dPM7xyx_fsrnr-Fy9fI2ny5DHUvZhVpyDZnZmISKqCCQmcEEY8IUyGxSFBsUXEQoBM8iTIUxGpMUETmhTHU8Zg9D7aFtPntynaqs01SWRU1N75QUCYhUJuDJ-3_kvunb2t-mZBqJFDJED8EA6bZxriWjDq2tivaoOKiTX3Xyq05-1eDXR-6GiCWiPxz9F95t_ANBQnTA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Kulkarni, S.H.</creator><creator>Sylvester, D.M.</creator><creator>Blaauw, D.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><author>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive body bias (ABB)</topic><topic>Bias</topic><topic>Circuit optimization</topic><topic>Circuits</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Drives</topic><topic>Gates (circuits)</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>post-silicon tuning</topic><topic>Probability distribution</topic><topic>RLC circuits</topic><topic>Sampling methods</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Threshold voltage</topic><topic>Tuning</topic><topic>variability</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, S.H.</creatorcontrib><creatorcontrib>Sylvester, D.M.</creatorcontrib><creatorcontrib>Blaauw, D.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulkarni, S.H.</au><au>Sylvester, D.M.</au><au>Blaauw, D.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>27</volume><issue>3</issue><spage>481</spage><epage>494</epage><pages>481-494</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2008.915529</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2008-03, Vol.27 (3), p.481-494
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_miscellaneous_875076850
source IEEE Electronic Library (IEL)
subjects Adaptive body bias (ABB)
Bias
Circuit optimization
Circuits
Delay
Design engineering
Design optimization
Drives
Gates (circuits)
Manufacturing
Optimization
post-silicon tuning
Probability distribution
RLC circuits
Sampling methods
Standard deviation
Studies
Threshold voltage
Tuning
variability
Very large scale integration
title Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design-Time%20Optimization%20of%20Post-Silicon%20Tuned%20Circuits%20Using%20Adaptive%20Body%20Bias&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Kulkarni,%20S.H.&rft.date=2008-03-01&rft.volume=27&rft.issue=3&rft.spage=481&rft.epage=494&rft.pages=481-494&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2008.915529&rft_dat=%3Cproquest_RIE%3E875076850%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862760944&rft_id=info:pmid/&rft_ieee_id=4454014&rfr_iscdi=true