Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias
Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assign...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2008-03, Vol.27 (3), p.481-494 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 3 |
container_start_page | 481 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 27 |
creator | Kulkarni, S.H. Sylvester, D.M. Blaauw, D.T. |
description | Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times. |
doi_str_mv | 10.1109/TCAD.2008.915529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875076850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4454014</ieee_id><sourcerecordid>875076850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpfgxVPqbDLJbo798AsKLRjPS7qdLVvyUbOJUH-9WyIePA0Dz_sy8zB2y2HCOWSP-Xy6mEQAcpLxJImyMzbiWSxC5Ak_ZyOIhAwBBFyyK-f2ABw9NGLrBTm7q8PcVhSsDp2t7HfR2aYOGhOsG9eF77a02u95X9M2mNtW97ZzwYez9S6Ybguf-aJg1myPwcwW7ppdmKJ0dPM7xyx_fsrnr-Fy9fI2ny5DHUvZhVpyDZnZmISKqCCQmcEEY8IUyGxSFBsUXEQoBM8iTIUxGpMUETmhTHU8Zg9D7aFtPntynaqs01SWRU1N75QUCYhUJuDJ-3_kvunb2t-mZBqJFDJED8EA6bZxriWjDq2tivaoOKiTX3Xyq05-1eDXR-6GiCWiPxz9F95t_ANBQnTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862760944</pqid></control><display><type>article</type><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><source>IEEE Electronic Library (IEL)</source><creator>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</creator><creatorcontrib>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</creatorcontrib><description>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2008.915529</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive body bias (ABB) ; Bias ; Circuit optimization ; Circuits ; Delay ; Design engineering ; Design optimization ; Drives ; Gates (circuits) ; Manufacturing ; Optimization ; post-silicon tuning ; Probability distribution ; RLC circuits ; Sampling methods ; Standard deviation ; Studies ; Threshold voltage ; Tuning ; variability ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2008-03, Vol.27 (3), p.481-494</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</citedby><cites>FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4454014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4454014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulkarni, S.H.</creatorcontrib><creatorcontrib>Sylvester, D.M.</creatorcontrib><creatorcontrib>Blaauw, D.T.</creatorcontrib><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</description><subject>Adaptive body bias (ABB)</subject><subject>Bias</subject><subject>Circuit optimization</subject><subject>Circuits</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Drives</subject><subject>Gates (circuits)</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>post-silicon tuning</subject><subject>Probability distribution</subject><subject>RLC circuits</subject><subject>Sampling methods</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Threshold voltage</subject><subject>Tuning</subject><subject>variability</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpfgxVPqbDLJbo798AsKLRjPS7qdLVvyUbOJUH-9WyIePA0Dz_sy8zB2y2HCOWSP-Xy6mEQAcpLxJImyMzbiWSxC5Ak_ZyOIhAwBBFyyK-f2ABw9NGLrBTm7q8PcVhSsDp2t7HfR2aYOGhOsG9eF77a02u95X9M2mNtW97ZzwYez9S6Ybguf-aJg1myPwcwW7ppdmKJ0dPM7xyx_fsrnr-Fy9fI2ny5DHUvZhVpyDZnZmISKqCCQmcEEY8IUyGxSFBsUXEQoBM8iTIUxGpMUETmhTHU8Zg9D7aFtPntynaqs01SWRU1N75QUCYhUJuDJ-3_kvunb2t-mZBqJFDJED8EA6bZxriWjDq2tivaoOKiTX3Xyq05-1eDXR-6GiCWiPxz9F95t_ANBQnTA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Kulkarni, S.H.</creator><creator>Sylvester, D.M.</creator><creator>Blaauw, D.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</title><author>Kulkarni, S.H. ; Sylvester, D.M. ; Blaauw, D.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c81c09fbf5ea2ae089f4543e460efb647b47172477192467ffc4564441e486c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive body bias (ABB)</topic><topic>Bias</topic><topic>Circuit optimization</topic><topic>Circuits</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Drives</topic><topic>Gates (circuits)</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>post-silicon tuning</topic><topic>Probability distribution</topic><topic>RLC circuits</topic><topic>Sampling methods</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Threshold voltage</topic><topic>Tuning</topic><topic>variability</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, S.H.</creatorcontrib><creatorcontrib>Sylvester, D.M.</creatorcontrib><creatorcontrib>Blaauw, D.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulkarni, S.H.</au><au>Sylvester, D.M.</au><au>Blaauw, D.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>27</volume><issue>3</issue><spage>481</spage><epage>494</epage><pages>481-494</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Adaptive body biasing is a powerful technique that allows post-silicon tuning of individual manufactured dies such that each die optimally meets the delay and power constraints. Assigning individual bias control to each gate leads to severe overhead, rendering the method impractical. However, assigning a single bias control to all gates in the circuit prevents the method from compensating for intra-die variation and greatly reduces its effectiveness. In this paper, we propose a new variability-aware method that clusters gates at design time into a handful of carefully chosen independent body-bias groups, which are then individually tuned post-silicon for each die. We show that this allows us to obtain near-optimal performance and power characteristics with minimal overhead. For each gate, we generate the probability distribution of its post-silicon ideal body bias voltage using an efficient sampling method. We then use these distributions and their correlations to drive a statistically aware clustering technique. We study the physical design constraints and show how the area and wirelength overhead can be significantly limited using the proposed method. Compared with a fixed design-time based dual threshold voltage assignment method, we improve leakage power by 38%-68% while simultaneously reducing the standard deviation of delay by two to nine times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2008.915529</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2008-03, Vol.27 (3), p.481-494 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_miscellaneous_875076850 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive body bias (ABB) Bias Circuit optimization Circuits Delay Design engineering Design optimization Drives Gates (circuits) Manufacturing Optimization post-silicon tuning Probability distribution RLC circuits Sampling methods Standard deviation Studies Threshold voltage Tuning variability Very large scale integration |
title | Design-Time Optimization of Post-Silicon Tuned Circuits Using Adaptive Body Bias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design-Time%20Optimization%20of%20Post-Silicon%20Tuned%20Circuits%20Using%20Adaptive%20Body%20Bias&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Kulkarni,%20S.H.&rft.date=2008-03-01&rft.volume=27&rft.issue=3&rft.spage=481&rft.epage=494&rft.pages=481-494&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2008.915529&rft_dat=%3Cproquest_RIE%3E875076850%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862760944&rft_id=info:pmid/&rft_ieee_id=4454014&rfr_iscdi=true |