Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem

This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct featu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Information Processing 2010, Vol.18, pp.164-174
Hauptverfasser: Watchareeruetai, Ukrit, Takeuchi, Yoshinori, Matsumoto, Tetsuya, Kudo, Hiroaki, Ohnishi, Noboru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue
container_start_page 164
container_title Journal of Information Processing
container_volume 18
creator Watchareeruetai, Ukrit
Takeuchi, Yoshinori
Matsumoto, Tetsuya
Kudo, Hiroaki
Ohnishi, Noboru
description This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.
doi_str_mv 10.2197/ipsjjip.18.164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875066404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875066404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</originalsourceid><addsrcrecordid>eNpNkU9vGyEQxVdVI9V1eu2ZW07rwi7GuDfLtd1Klhrlj3pEs-zgYO2yLrBJt58kHzdEdqxcGBh-76HhZdlXRicFm8--2UPY7-1hwuSECf4hGzEpi1yIafHx3f5T9jmEPaViTqd0lD2vHqHpIdrOBdIZskaIvUey-hc96Nc2ufbdzkMbyO3g4gMG-x9rUg3kBuve1eD0kHtsu8fU3VqH4MkGHUar35StdbvvZEGWEJDcxr4eSLJNVmQLT478waT8gRHPz1UNtpfZhYEm4JdTHWf369Xd8me-_b35tVxsc82p5DkHw0wapRKGm5rOZV0XwpS1RlqBKSvkUBbTIh0KAMoKqauEz0rKeIVzqctxdnX0Pfjub48hqtYGjU0DDrs-KDmbUiE45YmcHEntuxA8GnXwtgU_KEbVawLqlIBiUqUEkmB5FOxDhB2ecfDpcxp8j9PTIvj5Vj-AV-jKFxU4l2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875066404</pqid></control><display><type>article</type><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><source>J-STAGE Free</source><creator>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</creator><creatorcontrib>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</creatorcontrib><description>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</description><identifier>ISSN: 1882-6652</identifier><identifier>EISSN: 1882-6652</identifier><identifier>DOI: 10.2197/ipsjjip.18.164</identifier><language>eng</language><publisher>Information Processing Society of Japan</publisher><subject>Evolutionary ; Feature extraction ; Genetics ; Object recognition ; Programming ; Simulation ; Synthesis ; Weeds</subject><ispartof>Journal of Information Processing, 2010, Vol.18, pp.164-174</ispartof><rights>2010 by the Information Processing Society of Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Matsumoto, Tetsuya</creatorcontrib><creatorcontrib>Kudo, Hiroaki</creatorcontrib><creatorcontrib>Ohnishi, Noboru</creatorcontrib><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><title>Journal of Information Processing</title><addtitle>Journal of Information Processing</addtitle><description>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</description><subject>Evolutionary</subject><subject>Feature extraction</subject><subject>Genetics</subject><subject>Object recognition</subject><subject>Programming</subject><subject>Simulation</subject><subject>Synthesis</subject><subject>Weeds</subject><issn>1882-6652</issn><issn>1882-6652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkU9vGyEQxVdVI9V1eu2ZW07rwi7GuDfLtd1Klhrlj3pEs-zgYO2yLrBJt58kHzdEdqxcGBh-76HhZdlXRicFm8--2UPY7-1hwuSECf4hGzEpi1yIafHx3f5T9jmEPaViTqd0lD2vHqHpIdrOBdIZskaIvUey-hc96Nc2ufbdzkMbyO3g4gMG-x9rUg3kBuve1eD0kHtsu8fU3VqH4MkGHUar35StdbvvZEGWEJDcxr4eSLJNVmQLT478waT8gRHPz1UNtpfZhYEm4JdTHWf369Xd8me-_b35tVxsc82p5DkHw0wapRKGm5rOZV0XwpS1RlqBKSvkUBbTIh0KAMoKqauEz0rKeIVzqctxdnX0Pfjub48hqtYGjU0DDrs-KDmbUiE45YmcHEntuxA8GnXwtgU_KEbVawLqlIBiUqUEkmB5FOxDhB2ecfDpcxp8j9PTIvj5Vj-AV-jKFxU4l2I</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Watchareeruetai, Ukrit</creator><creator>Takeuchi, Yoshinori</creator><creator>Matsumoto, Tetsuya</creator><creator>Kudo, Hiroaki</creator><creator>Ohnishi, Noboru</creator><general>Information Processing Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><author>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Evolutionary</topic><topic>Feature extraction</topic><topic>Genetics</topic><topic>Object recognition</topic><topic>Programming</topic><topic>Simulation</topic><topic>Synthesis</topic><topic>Weeds</topic><toplevel>online_resources</toplevel><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Matsumoto, Tetsuya</creatorcontrib><creatorcontrib>Kudo, Hiroaki</creatorcontrib><creatorcontrib>Ohnishi, Noboru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Information Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watchareeruetai, Ukrit</au><au>Takeuchi, Yoshinori</au><au>Matsumoto, Tetsuya</au><au>Kudo, Hiroaki</au><au>Ohnishi, Noboru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</atitle><jtitle>Journal of Information Processing</jtitle><addtitle>Journal of Information Processing</addtitle><date>2010</date><risdate>2010</risdate><volume>18</volume><spage>164</spage><epage>174</epage><pages>164-174</pages><issn>1882-6652</issn><eissn>1882-6652</eissn><abstract>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</abstract><pub>Information Processing Society of Japan</pub><doi>10.2197/ipsjjip.18.164</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-6652
ispartof Journal of Information Processing, 2010, Vol.18, pp.164-174
issn 1882-6652
1882-6652
language eng
recordid cdi_proquest_miscellaneous_875066404
source J-STAGE Free
subjects Evolutionary
Feature extraction
Genetics
Object recognition
Programming
Simulation
Synthesis
Weeds
title Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluations%20of%20Feature%20Extraction%20Programs%20Synthesized%20by%20Redundancy-removed%20Linear%20Genetic%20Programming:%20A%20Case%20Study%20on%20the%20Lawn%20Weed%20Detection%20Problem&rft.jtitle=Journal%20of%20Information%20Processing&rft.au=Watchareeruetai,%20Ukrit&rft.date=2010&rft.volume=18&rft.spage=164&rft.epage=174&rft.pages=164-174&rft.issn=1882-6652&rft.eissn=1882-6652&rft_id=info:doi/10.2197/ipsjjip.18.164&rft_dat=%3Cproquest_cross%3E875066404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875066404&rft_id=info:pmid/&rfr_iscdi=true