Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem
This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct featu...
Gespeichert in:
Veröffentlicht in: | Journal of Information Processing 2010, Vol.18, pp.164-174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | |
container_start_page | 164 |
container_title | Journal of Information Processing |
container_volume | 18 |
creator | Watchareeruetai, Ukrit Takeuchi, Yoshinori Matsumoto, Tetsuya Kudo, Hiroaki Ohnishi, Noboru |
description | This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure. |
doi_str_mv | 10.2197/ipsjjip.18.164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875066404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875066404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</originalsourceid><addsrcrecordid>eNpNkU9vGyEQxVdVI9V1eu2ZW07rwi7GuDfLtd1Klhrlj3pEs-zgYO2yLrBJt58kHzdEdqxcGBh-76HhZdlXRicFm8--2UPY7-1hwuSECf4hGzEpi1yIafHx3f5T9jmEPaViTqd0lD2vHqHpIdrOBdIZskaIvUey-hc96Nc2ufbdzkMbyO3g4gMG-x9rUg3kBuve1eD0kHtsu8fU3VqH4MkGHUar35StdbvvZEGWEJDcxr4eSLJNVmQLT478waT8gRHPz1UNtpfZhYEm4JdTHWf369Xd8me-_b35tVxsc82p5DkHw0wapRKGm5rOZV0XwpS1RlqBKSvkUBbTIh0KAMoKqauEz0rKeIVzqctxdnX0Pfjub48hqtYGjU0DDrs-KDmbUiE45YmcHEntuxA8GnXwtgU_KEbVawLqlIBiUqUEkmB5FOxDhB2ecfDpcxp8j9PTIvj5Vj-AV-jKFxU4l2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875066404</pqid></control><display><type>article</type><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><source>J-STAGE Free</source><creator>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</creator><creatorcontrib>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</creatorcontrib><description>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</description><identifier>ISSN: 1882-6652</identifier><identifier>EISSN: 1882-6652</identifier><identifier>DOI: 10.2197/ipsjjip.18.164</identifier><language>eng</language><publisher>Information Processing Society of Japan</publisher><subject>Evolutionary ; Feature extraction ; Genetics ; Object recognition ; Programming ; Simulation ; Synthesis ; Weeds</subject><ispartof>Journal of Information Processing, 2010, Vol.18, pp.164-174</ispartof><rights>2010 by the Information Processing Society of Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Matsumoto, Tetsuya</creatorcontrib><creatorcontrib>Kudo, Hiroaki</creatorcontrib><creatorcontrib>Ohnishi, Noboru</creatorcontrib><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><title>Journal of Information Processing</title><addtitle>Journal of Information Processing</addtitle><description>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</description><subject>Evolutionary</subject><subject>Feature extraction</subject><subject>Genetics</subject><subject>Object recognition</subject><subject>Programming</subject><subject>Simulation</subject><subject>Synthesis</subject><subject>Weeds</subject><issn>1882-6652</issn><issn>1882-6652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpNkU9vGyEQxVdVI9V1eu2ZW07rwi7GuDfLtd1Klhrlj3pEs-zgYO2yLrBJt58kHzdEdqxcGBh-76HhZdlXRicFm8--2UPY7-1hwuSECf4hGzEpi1yIafHx3f5T9jmEPaViTqd0lD2vHqHpIdrOBdIZskaIvUey-hc96Nc2ufbdzkMbyO3g4gMG-x9rUg3kBuve1eD0kHtsu8fU3VqH4MkGHUar35StdbvvZEGWEJDcxr4eSLJNVmQLT478waT8gRHPz1UNtpfZhYEm4JdTHWf369Xd8me-_b35tVxsc82p5DkHw0wapRKGm5rOZV0XwpS1RlqBKSvkUBbTIh0KAMoKqauEz0rKeIVzqctxdnX0Pfjub48hqtYGjU0DDrs-KDmbUiE45YmcHEntuxA8GnXwtgU_KEbVawLqlIBiUqUEkmB5FOxDhB2ecfDpcxp8j9PTIvj5Vj-AV-jKFxU4l2I</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Watchareeruetai, Ukrit</creator><creator>Takeuchi, Yoshinori</creator><creator>Matsumoto, Tetsuya</creator><creator>Kudo, Hiroaki</creator><creator>Ohnishi, Noboru</creator><general>Information Processing Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2010</creationdate><title>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</title><author>Watchareeruetai, Ukrit ; Takeuchi, Yoshinori ; Matsumoto, Tetsuya ; Kudo, Hiroaki ; Ohnishi, Noboru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4084-4af1f905b6f4fd098dd26f3dce0baf3be4a32520ba2aa0128cbf9073014be98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Evolutionary</topic><topic>Feature extraction</topic><topic>Genetics</topic><topic>Object recognition</topic><topic>Programming</topic><topic>Simulation</topic><topic>Synthesis</topic><topic>Weeds</topic><toplevel>online_resources</toplevel><creatorcontrib>Watchareeruetai, Ukrit</creatorcontrib><creatorcontrib>Takeuchi, Yoshinori</creatorcontrib><creatorcontrib>Matsumoto, Tetsuya</creatorcontrib><creatorcontrib>Kudo, Hiroaki</creatorcontrib><creatorcontrib>Ohnishi, Noboru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Information Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watchareeruetai, Ukrit</au><au>Takeuchi, Yoshinori</au><au>Matsumoto, Tetsuya</au><au>Kudo, Hiroaki</au><au>Ohnishi, Noboru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem</atitle><jtitle>Journal of Information Processing</jtitle><addtitle>Journal of Information Processing</addtitle><date>2010</date><risdate>2010</risdate><volume>18</volume><spage>164</spage><epage>174</epage><pages>164-174</pages><issn>1882-6652</issn><eissn>1882-6652</eissn><abstract>This paper presents an evolutionary synthesis of feature extraction programs for object recognition. The evolutionary synthesis method employed is based on linear genetic programming which is combined with redundancy-removed recombination. The evolutionary synthesis can automatically construct feature extraction programs for a given object recognition problem, without any domain-specific knowledge. Experiments were done on a lawn weed detection problem with both a low-level performance measure, i.e., segmentation accuracy, and an application-level performance measure, i.e., simulated weed control performance. Compared with four human-designed lawn weed detection methods, the results show that the performance of synthesized feature extraction programs is significantly better than three human-designed methods when evaluated with the low-level measure, and is better than two human-designed methods according to the application-level measure.</abstract><pub>Information Processing Society of Japan</pub><doi>10.2197/ipsjjip.18.164</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-6652 |
ispartof | Journal of Information Processing, 2010, Vol.18, pp.164-174 |
issn | 1882-6652 1882-6652 |
language | eng |
recordid | cdi_proquest_miscellaneous_875066404 |
source | J-STAGE Free |
subjects | Evolutionary Feature extraction Genetics Object recognition Programming Simulation Synthesis Weeds |
title | Evaluations of Feature Extraction Programs Synthesized by Redundancy-removed Linear Genetic Programming: A Case Study on the Lawn Weed Detection Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluations%20of%20Feature%20Extraction%20Programs%20Synthesized%20by%20Redundancy-removed%20Linear%20Genetic%20Programming:%20A%20Case%20Study%20on%20the%20Lawn%20Weed%20Detection%20Problem&rft.jtitle=Journal%20of%20Information%20Processing&rft.au=Watchareeruetai,%20Ukrit&rft.date=2010&rft.volume=18&rft.spage=164&rft.epage=174&rft.pages=164-174&rft.issn=1882-6652&rft.eissn=1882-6652&rft_id=info:doi/10.2197/ipsjjip.18.164&rft_dat=%3Cproquest_cross%3E875066404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875066404&rft_id=info:pmid/&rfr_iscdi=true |