Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis
Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2008-05, Vol.30 (5), p.810-822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 5 |
container_start_page | 810 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 30 |
creator | Landgrebe, T.C.W. Duin, R.P.W. |
description | Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology. |
doi_str_mv | 10.1109/TPAMI.2007.70740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875065805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359355</ieee_id><sourcerecordid>875065805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil1b74Igg6CeZn3Jy8_jslZb6NJS6nnIZDKQMjuzJjOl-9-b_UEFD-0pJPm890K-hHygMKcUzPe7m8Xqcs4A1FyB4vCKzKhBU6JA85rMgEpWas30CXmX0j0A5QLwLTmhGqVhgs5Ifd62wQXfj8Vq6sbgOptScXu9LBabTRwew9qOYeiLelv88G5Yb4YU9gcPwRbLoW-ntNut7BjDY3Hj4zjF-lCy6G23TSGdkTet7ZJ_f1xPye-f53fLi_Lq-tflcnFVOiH0WHLDfNNwTxuv0DKtFLe1V954qykiramUCnhrKXdUCA6cNqxBrGt0PCs8Jd8OffO7_0w-jdU6JOe7zvZ-mFJlACVTTJoXpVYCpNAgsvz6rMwP4qilfBEi5yCp2nX8_B-8H6aYvyqPlQwFy6MzggNycUgp-rbaxJxE3FYUql3y1T75apd8tU8-l3w69p3qtW_-FRyjzuDLEdjkbNdG27uQnhwDxoVGld3Hgwve-6drjsKgEPgX-Li-Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862352506</pqid></control><display><type>article</type><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Landgrebe, T.C.W. ; Duin, R.P.W.</creator><creatorcontrib>Landgrebe, T.C.W. ; Duin, R.P.W.</creatorcontrib><description>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2007.70740</identifier><identifier>PMID: 18369251</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>2628 CD Delft ; Algorithm design and analysis ; Algorithms ; Applied sciences ; Area measurement ; Artificial Intelligence ; Character recognition ; Cluster Analysis ; Computational complexity ; Computer science; control theory; systems ; Confusion ; Costs ; Data Interpretation, Statistical ; Decomposition ; Delft University of Technology Mekelweg 4 ; Design methodology ; Design optimization ; Exact sciences and technology ; Fluctuations ; Information Storage and Retrieval - methods ; Intelligence ; Machine learning ; Mathematical analysis ; Matrix decomposition ; Pattern analysis ; Pattern Recognition, Automated - methods ; ROC Curve ; Studies ; T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group ; The Netherlands</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2008-05, Vol.30 (5), p.810-822</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</citedby><cites>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20245837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18369251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landgrebe, T.C.W.</creatorcontrib><creatorcontrib>Duin, R.P.W.</creatorcontrib><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</description><subject>2628 CD Delft</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Area measurement</subject><subject>Artificial Intelligence</subject><subject>Character recognition</subject><subject>Cluster Analysis</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Confusion</subject><subject>Costs</subject><subject>Data Interpretation, Statistical</subject><subject>Decomposition</subject><subject>Delft University of Technology Mekelweg 4</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>ROC Curve</subject><subject>Studies</subject><subject>T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group</subject><subject>The Netherlands</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agil1b74Igg6CeZn3Jy8_jslZb6NJS6nnIZDKQMjuzJjOl-9-b_UEFD-0pJPm890K-hHygMKcUzPe7m8Xqcs4A1FyB4vCKzKhBU6JA85rMgEpWas30CXmX0j0A5QLwLTmhGqVhgs5Ifd62wQXfj8Vq6sbgOptScXu9LBabTRwew9qOYeiLelv88G5Yb4YU9gcPwRbLoW-ntNut7BjDY3Hj4zjF-lCy6G23TSGdkTet7ZJ_f1xPye-f53fLi_Lq-tflcnFVOiH0WHLDfNNwTxuv0DKtFLe1V954qykiramUCnhrKXdUCA6cNqxBrGt0PCs8Jd8OffO7_0w-jdU6JOe7zvZ-mFJlACVTTJoXpVYCpNAgsvz6rMwP4qilfBEi5yCp2nX8_B-8H6aYvyqPlQwFy6MzggNycUgp-rbaxJxE3FYUql3y1T75apd8tU8-l3w69p3qtW_-FRyjzuDLEdjkbNdG27uQnhwDxoVGld3Hgwve-6drjsKgEPgX-Li-Qw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Landgrebe, T.C.W.</creator><creator>Duin, R.P.W.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><author>Landgrebe, T.C.W. ; Duin, R.P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>2628 CD Delft</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Area measurement</topic><topic>Artificial Intelligence</topic><topic>Character recognition</topic><topic>Cluster Analysis</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Confusion</topic><topic>Costs</topic><topic>Data Interpretation, Statistical</topic><topic>Decomposition</topic><topic>Delft University of Technology Mekelweg 4</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>ROC Curve</topic><topic>Studies</topic><topic>T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group</topic><topic>The Netherlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landgrebe, T.C.W.</creatorcontrib><creatorcontrib>Duin, R.P.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Landgrebe, T.C.W.</au><au>Duin, R.P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>30</volume><issue>5</issue><spage>810</spage><epage>822</epage><pages>810-822</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>18369251</pmid><doi>10.1109/TPAMI.2007.70740</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2008-05, Vol.30 (5), p.810-822 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_875065805 |
source | IEEE Electronic Library (IEL) |
subjects | 2628 CD Delft Algorithm design and analysis Algorithms Applied sciences Area measurement Artificial Intelligence Character recognition Cluster Analysis Computational complexity Computer science control theory systems Confusion Costs Data Interpretation, Statistical Decomposition Delft University of Technology Mekelweg 4 Design methodology Design optimization Exact sciences and technology Fluctuations Information Storage and Retrieval - methods Intelligence Machine learning Mathematical analysis Matrix decomposition Pattern analysis Pattern Recognition, Automated - methods ROC Curve Studies T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group The Netherlands |
title | Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multiclass%20ROC%20Approximation%20by%20Decomposition%20via%20Confusion%20Matrix%20Perturbation%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Landgrebe,%20T.C.W.&rft.date=2008-05-01&rft.volume=30&rft.issue=5&rft.spage=810&rft.epage=822&rft.pages=810-822&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2007.70740&rft_dat=%3Cproquest_RIE%3E875065805%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862352506&rft_id=info:pmid/18369251&rft_ieee_id=4359355&rfr_iscdi=true |