Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis

Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2008-05, Vol.30 (5), p.810-822
Hauptverfasser: Landgrebe, T.C.W., Duin, R.P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 5
container_start_page 810
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 30
creator Landgrebe, T.C.W.
Duin, R.P.W.
description Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.
doi_str_mv 10.1109/TPAMI.2007.70740
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875065805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359355</ieee_id><sourcerecordid>875065805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil1b74Igg6CeZn3Jy8_jslZb6NJS6nnIZDKQMjuzJjOl-9-b_UEFD-0pJPm890K-hHygMKcUzPe7m8Xqcs4A1FyB4vCKzKhBU6JA85rMgEpWas30CXmX0j0A5QLwLTmhGqVhgs5Ifd62wQXfj8Vq6sbgOptScXu9LBabTRwew9qOYeiLelv88G5Yb4YU9gcPwRbLoW-ntNut7BjDY3Hj4zjF-lCy6G23TSGdkTet7ZJ_f1xPye-f53fLi_Lq-tflcnFVOiH0WHLDfNNwTxuv0DKtFLe1V954qykiramUCnhrKXdUCA6cNqxBrGt0PCs8Jd8OffO7_0w-jdU6JOe7zvZ-mFJlACVTTJoXpVYCpNAgsvz6rMwP4qilfBEi5yCp2nX8_B-8H6aYvyqPlQwFy6MzggNycUgp-rbaxJxE3FYUql3y1T75apd8tU8-l3w69p3qtW_-FRyjzuDLEdjkbNdG27uQnhwDxoVGld3Hgwve-6drjsKgEPgX-Li-Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862352506</pqid></control><display><type>article</type><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Landgrebe, T.C.W. ; Duin, R.P.W.</creator><creatorcontrib>Landgrebe, T.C.W. ; Duin, R.P.W.</creatorcontrib><description>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2007.70740</identifier><identifier>PMID: 18369251</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>2628 CD Delft ; Algorithm design and analysis ; Algorithms ; Applied sciences ; Area measurement ; Artificial Intelligence ; Character recognition ; Cluster Analysis ; Computational complexity ; Computer science; control theory; systems ; Confusion ; Costs ; Data Interpretation, Statistical ; Decomposition ; Delft University of Technology Mekelweg 4 ; Design methodology ; Design optimization ; Exact sciences and technology ; Fluctuations ; Information Storage and Retrieval - methods ; Intelligence ; Machine learning ; Mathematical analysis ; Matrix decomposition ; Pattern analysis ; Pattern Recognition, Automated - methods ; ROC Curve ; Studies ; T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group ; The Netherlands</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2008-05, Vol.30 (5), p.810-822</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</citedby><cites>FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20245837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18369251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Landgrebe, T.C.W.</creatorcontrib><creatorcontrib>Duin, R.P.W.</creatorcontrib><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</description><subject>2628 CD Delft</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Area measurement</subject><subject>Artificial Intelligence</subject><subject>Character recognition</subject><subject>Cluster Analysis</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Confusion</subject><subject>Costs</subject><subject>Data Interpretation, Statistical</subject><subject>Decomposition</subject><subject>Delft University of Technology Mekelweg 4</subject><subject>Design methodology</subject><subject>Design optimization</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>ROC Curve</subject><subject>Studies</subject><subject>T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group</subject><subject>The Netherlands</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agil1b74Igg6CeZn3Jy8_jslZb6NJS6nnIZDKQMjuzJjOl-9-b_UEFD-0pJPm890K-hHygMKcUzPe7m8Xqcs4A1FyB4vCKzKhBU6JA85rMgEpWas30CXmX0j0A5QLwLTmhGqVhgs5Ifd62wQXfj8Vq6sbgOptScXu9LBabTRwew9qOYeiLelv88G5Yb4YU9gcPwRbLoW-ntNut7BjDY3Hj4zjF-lCy6G23TSGdkTet7ZJ_f1xPye-f53fLi_Lq-tflcnFVOiH0WHLDfNNwTxuv0DKtFLe1V954qykiramUCnhrKXdUCA6cNqxBrGt0PCs8Jd8OffO7_0w-jdU6JOe7zvZ-mFJlACVTTJoXpVYCpNAgsvz6rMwP4qilfBEi5yCp2nX8_B-8H6aYvyqPlQwFy6MzggNycUgp-rbaxJxE3FYUql3y1T75apd8tU8-l3w69p3qtW_-FRyjzuDLEdjkbNdG27uQnhwDxoVGld3Hgwve-6drjsKgEPgX-Li-Qw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Landgrebe, T.C.W.</creator><creator>Duin, R.P.W.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</title><author>Landgrebe, T.C.W. ; Duin, R.P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-492edd4e1de73a28774abe7e9ea81331b166704fa14c1554041d2d33bb3c4e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>2628 CD Delft</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Area measurement</topic><topic>Artificial Intelligence</topic><topic>Character recognition</topic><topic>Cluster Analysis</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Confusion</topic><topic>Costs</topic><topic>Data Interpretation, Statistical</topic><topic>Decomposition</topic><topic>Delft University of Technology Mekelweg 4</topic><topic>Design methodology</topic><topic>Design optimization</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>ROC Curve</topic><topic>Studies</topic><topic>T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group</topic><topic>The Netherlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landgrebe, T.C.W.</creatorcontrib><creatorcontrib>Duin, R.P.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Landgrebe, T.C.W.</au><au>Duin, R.P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>30</volume><issue>5</issue><spage>810</spage><epage>822</epage><pages>810-822</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Receiver operator characteristic (ROC) analysis has become a standard tool in the design and evaluation of two-class classification problems. It allows for an analysis that incorporates all possible priors, costs, and operating points, which is important in many real problems, where conditions are often nonideal. Extending this to the multiclass case is attractive, conferring the benefits of ROC analysis to a multitude of new problems. Even though the ROC analysis extends theoretically to the multiclass case, the exponential computational complexity as a function of the number of classes is restrictive. In this paper, we show that the multiclass ROC can often be simplified considerably because some ROC dimensions are independent of each other. We present an algorithm that analyzes interactions between various ROC dimensions, identifying independent classes, and groups of interacting classes, allowing the ROC to be decomposed. The resulting decomposed ROC hypersurface can be interrogated in a similar fashion to the ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson optimization, as well as the volume under the ROC. An extensive bouquet of examples and experiments demonstrates the potential of this methodology.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>18369251</pmid><doi>10.1109/TPAMI.2007.70740</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2008-05, Vol.30 (5), p.810-822
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_875065805
source IEEE Electronic Library (IEL)
subjects 2628 CD Delft
Algorithm design and analysis
Algorithms
Applied sciences
Area measurement
Artificial Intelligence
Character recognition
Cluster Analysis
Computational complexity
Computer science
control theory
systems
Confusion
Costs
Data Interpretation, Statistical
Decomposition
Delft University of Technology Mekelweg 4
Design methodology
Design optimization
Exact sciences and technology
Fluctuations
Information Storage and Retrieval - methods
Intelligence
Machine learning
Mathematical analysis
Matrix decomposition
Pattern analysis
Pattern Recognition, Automated - methods
ROC Curve
Studies
T.C.W. Landgrebe and R.P.W. Duin are in the Information and Communication Theory Group
The Netherlands
title Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multiclass%20ROC%20Approximation%20by%20Decomposition%20via%20Confusion%20Matrix%20Perturbation%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Landgrebe,%20T.C.W.&rft.date=2008-05-01&rft.volume=30&rft.issue=5&rft.spage=810&rft.epage=822&rft.pages=810-822&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2007.70740&rft_dat=%3Cproquest_RIE%3E875065805%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862352506&rft_id=info:pmid/18369251&rft_ieee_id=4359355&rfr_iscdi=true