Dislocation shielding and flaw tolerance in titanium nitride
Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ...
Gespeichert in:
Veröffentlicht in: | International journal of plasticity 2011-05, Vol.27 (5), p.739-747 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 5 |
container_start_page | 739 |
container_title | International journal of plasticity |
container_volume | 27 |
creator | Kumar, S. Wolfe, D.E. Haque, M.A. |
description | Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750
°C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300
nm thick, 5
μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800
nm to 1.5
μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150
nm specimens, which is observed real time in the microscope. |
doi_str_mv | 10.1016/j.ijplas.2010.09.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875062777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910001294</els_id><sourcerecordid>875062777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9iKeukyZNWxBB_IYFL3oOYzKrs2TbNekq_nu7dPHoaWB4P3gfIU4lzCRIc7Gc8XIdMM0KGF7QzADUnpjIumryQpZ6X0yg0k1utGwOxVFKSwAoayUn4vKWU-gc9ty1WfpgCp7b9wxbny0Cfmd9Fyhi6yjjNuu5x5Y3q6zlPrKnY3GwwJDoZHen4vX-7uXmMZ8_PzzdXM9zp0zd50SqctJ4pZwnp1GpAqVHKmuqjSlMgShRQVNIUt6A9KDBv5UNaaW8c05NxfmYu47d54ZSb1ecHIWALXWbZOuqBFNUVTUo9ah0sUsp0sKuI68w_lgJdsvKLu3Iym5ZWWjswGqwne0KMDkMi-1iTn_eQkvQpdzGX406GtZ-MUWbHNNAx3Mk11vf8f9Fv0z7gXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875062777</pqid></control><display><type>article</type><title>Dislocation shielding and flaw tolerance in titanium nitride</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</creator><creatorcontrib>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</creatorcontrib><description>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750
°C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300
nm thick, 5
μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800
nm to 1.5
μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150
nm specimens, which is observed real time in the microscope.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.09.003</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Dislocations ; Exact sciences and technology ; Fracture ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Multi-layer thin films ; Multilayers ; Notches ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress concentration ; Structural and continuum mechanics ; Tension test ; Titanium ; Titanium nitride ; Tolerances ; Transmission electron microscopy (TEM)</subject><ispartof>International journal of plasticity, 2011-05, Vol.27 (5), p.739-747</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</citedby><cites>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2010.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24104517$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Wolfe, D.E.</creatorcontrib><creatorcontrib>Haque, M.A.</creatorcontrib><title>Dislocation shielding and flaw tolerance in titanium nitride</title><title>International journal of plasticity</title><description>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750
°C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300
nm thick, 5
μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800
nm to 1.5
μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150
nm specimens, which is observed real time in the microscope.</description><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Multi-layer thin films</subject><subject>Multilayers</subject><subject>Notches</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress concentration</subject><subject>Structural and continuum mechanics</subject><subject>Tension test</subject><subject>Titanium</subject><subject>Titanium nitride</subject><subject>Tolerances</subject><subject>Transmission electron microscopy (TEM)</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9iKeukyZNWxBB_IYFL3oOYzKrs2TbNekq_nu7dPHoaWB4P3gfIU4lzCRIc7Gc8XIdMM0KGF7QzADUnpjIumryQpZ6X0yg0k1utGwOxVFKSwAoayUn4vKWU-gc9ty1WfpgCp7b9wxbny0Cfmd9Fyhi6yjjNuu5x5Y3q6zlPrKnY3GwwJDoZHen4vX-7uXmMZ8_PzzdXM9zp0zd50SqctJ4pZwnp1GpAqVHKmuqjSlMgShRQVNIUt6A9KDBv5UNaaW8c05NxfmYu47d54ZSb1ecHIWALXWbZOuqBFNUVTUo9ah0sUsp0sKuI68w_lgJdsvKLu3Iym5ZWWjswGqwne0KMDkMi-1iTn_eQkvQpdzGX406GtZ-MUWbHNNAx3Mk11vf8f9Fv0z7gXc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Kumar, S.</creator><creator>Wolfe, D.E.</creator><creator>Haque, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110501</creationdate><title>Dislocation shielding and flaw tolerance in titanium nitride</title><author>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Multi-layer thin films</topic><topic>Multilayers</topic><topic>Notches</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress concentration</topic><topic>Structural and continuum mechanics</topic><topic>Tension test</topic><topic>Titanium</topic><topic>Titanium nitride</topic><topic>Tolerances</topic><topic>Transmission electron microscopy (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Wolfe, D.E.</creatorcontrib><creatorcontrib>Haque, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S.</au><au>Wolfe, D.E.</au><au>Haque, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation shielding and flaw tolerance in titanium nitride</atitle><jtitle>International journal of plasticity</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>739</spage><epage>747</epage><pages>739-747</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750
°C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300
nm thick, 5
μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800
nm to 1.5
μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150
nm specimens, which is observed real time in the microscope.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.09.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-6419 |
ispartof | International journal of plasticity, 2011-05, Vol.27 (5), p.739-747 |
issn | 0749-6419 1879-2154 |
language | eng |
recordid | cdi_proquest_miscellaneous_875062777 |
source | Access via ScienceDirect (Elsevier) |
subjects | Dislocations Exact sciences and technology Fracture Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Multi-layer thin films Multilayers Notches Physics Solid mechanics Static elasticity (thermoelasticity...) Stress concentration Structural and continuum mechanics Tension test Titanium Titanium nitride Tolerances Transmission electron microscopy (TEM) |
title | Dislocation shielding and flaw tolerance in titanium nitride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20shielding%20and%20flaw%20tolerance%20in%20titanium%20nitride&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Kumar,%20S.&rft.date=2011-05-01&rft.volume=27&rft.issue=5&rft.spage=739&rft.epage=747&rft.pages=739-747&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.09.003&rft_dat=%3Cproquest_cross%3E875062777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875062777&rft_id=info:pmid/&rft_els_id=S0749641910001294&rfr_iscdi=true |