Dislocation shielding and flaw tolerance in titanium nitride

Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2011-05, Vol.27 (5), p.739-747
Hauptverfasser: Kumar, S., Wolfe, D.E., Haque, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 5
container_start_page 739
container_title International journal of plasticity
container_volume 27
creator Kumar, S.
Wolfe, D.E.
Haque, M.A.
description Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300 nm thick, 5 μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800 nm to 1.5 μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150 nm specimens, which is observed real time in the microscope.
doi_str_mv 10.1016/j.ijplas.2010.09.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875062777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641910001294</els_id><sourcerecordid>875062777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9iKeukyZNWxBB_IYFL3oOYzKrs2TbNekq_nu7dPHoaWB4P3gfIU4lzCRIc7Gc8XIdMM0KGF7QzADUnpjIumryQpZ6X0yg0k1utGwOxVFKSwAoayUn4vKWU-gc9ty1WfpgCp7b9wxbny0Cfmd9Fyhi6yjjNuu5x5Y3q6zlPrKnY3GwwJDoZHen4vX-7uXmMZ8_PzzdXM9zp0zd50SqctJ4pZwnp1GpAqVHKmuqjSlMgShRQVNIUt6A9KDBv5UNaaW8c05NxfmYu47d54ZSb1ecHIWALXWbZOuqBFNUVTUo9ah0sUsp0sKuI68w_lgJdsvKLu3Iym5ZWWjswGqwne0KMDkMi-1iTn_eQkvQpdzGX406GtZ-MUWbHNNAx3Mk11vf8f9Fv0z7gXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875062777</pqid></control><display><type>article</type><title>Dislocation shielding and flaw tolerance in titanium nitride</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</creator><creatorcontrib>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</creatorcontrib><description>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300 nm thick, 5 μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800 nm to 1.5 μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150 nm specimens, which is observed real time in the microscope.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2010.09.003</identifier><identifier>CODEN: IJPLER</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Dislocations ; Exact sciences and technology ; Fracture ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Multi-layer thin films ; Multilayers ; Notches ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress concentration ; Structural and continuum mechanics ; Tension test ; Titanium ; Titanium nitride ; Tolerances ; Transmission electron microscopy (TEM)</subject><ispartof>International journal of plasticity, 2011-05, Vol.27 (5), p.739-747</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</citedby><cites>FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2010.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24104517$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Wolfe, D.E.</creatorcontrib><creatorcontrib>Haque, M.A.</creatorcontrib><title>Dislocation shielding and flaw tolerance in titanium nitride</title><title>International journal of plasticity</title><description>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300 nm thick, 5 μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800 nm to 1.5 μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150 nm specimens, which is observed real time in the microscope.</description><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Multi-layer thin films</subject><subject>Multilayers</subject><subject>Notches</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress concentration</subject><subject>Structural and continuum mechanics</subject><subject>Tension test</subject><subject>Titanium</subject><subject>Titanium nitride</subject><subject>Tolerances</subject><subject>Transmission electron microscopy (TEM)</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9iKeukyZNWxBB_IYFL3oOYzKrs2TbNekq_nu7dPHoaWB4P3gfIU4lzCRIc7Gc8XIdMM0KGF7QzADUnpjIumryQpZ6X0yg0k1utGwOxVFKSwAoayUn4vKWU-gc9ty1WfpgCp7b9wxbny0Cfmd9Fyhi6yjjNuu5x5Y3q6zlPrKnY3GwwJDoZHen4vX-7uXmMZ8_PzzdXM9zp0zd50SqctJ4pZwnp1GpAqVHKmuqjSlMgShRQVNIUt6A9KDBv5UNaaW8c05NxfmYu47d54ZSb1ecHIWALXWbZOuqBFNUVTUo9ah0sUsp0sKuI68w_lgJdsvKLu3Iym5ZWWjswGqwne0KMDkMi-1iTn_eQkvQpdzGX406GtZ-MUWbHNNAx3Mk11vf8f9Fv0z7gXc</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Kumar, S.</creator><creator>Wolfe, D.E.</creator><creator>Haque, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20110501</creationdate><title>Dislocation shielding and flaw tolerance in titanium nitride</title><author>Kumar, S. ; Wolfe, D.E. ; Haque, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ee37c16d33cdec4a332a1dae58e866262aa1a30921e3d601d040db59e433dccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Multi-layer thin films</topic><topic>Multilayers</topic><topic>Notches</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress concentration</topic><topic>Structural and continuum mechanics</topic><topic>Tension test</topic><topic>Titanium</topic><topic>Titanium nitride</topic><topic>Tolerances</topic><topic>Transmission electron microscopy (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Wolfe, D.E.</creatorcontrib><creatorcontrib>Haque, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S.</au><au>Wolfe, D.E.</au><au>Haque, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation shielding and flaw tolerance in titanium nitride</atitle><jtitle>International journal of plasticity</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>739</spage><epage>747</epage><pages>739-747</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><coden>IJPLER</coden><abstract>Titanium nitride is a very brittle and flaw sensitive ceramic material at temperatures below 750 °C. In this study, we present experimental evidence of room temperature dislocation-based plasticity in the material as well as insensitivity to flaws in form of single edge notches. We performed in-situ fracture experiments inside the transmission electron microscope on 150–300 nm thick, 5 μ wide freestanding films fabricated from titanium nitride/titanium multi-layers with titanium nitride as the notched and titanium as un-notched layers. The calculated stress concentration factor for the 800 nm to 1.5 μ long notches were greater than 8, however, the terminal cracks always nucleated at the un-notched edge of the specimens and not at the notch tip. To explain such remarkable flaw tolerance, we observe motion of dislocations (pre-existing and nucleated away from the notch) towards the notch tip. We suggest that the room temperature dislocation activities are facilitated by the residual stresses in the multi-layer specimens and the thickness dependence of image forces, which reduces the effective shear modulus to promote dislocation motion. The migration of dislocations towards the notch tip shields it from stress concentration to manifest the flaw tolerance in 150 nm specimens, which is observed real time in the microscope.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2010.09.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2011-05, Vol.27 (5), p.739-747
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_miscellaneous_875062777
source Access via ScienceDirect (Elsevier)
subjects Dislocations
Exact sciences and technology
Fracture
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Multi-layer thin films
Multilayers
Notches
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Stress concentration
Structural and continuum mechanics
Tension test
Titanium
Titanium nitride
Tolerances
Transmission electron microscopy (TEM)
title Dislocation shielding and flaw tolerance in titanium nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20shielding%20and%20flaw%20tolerance%20in%20titanium%20nitride&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Kumar,%20S.&rft.date=2011-05-01&rft.volume=27&rft.issue=5&rft.spage=739&rft.epage=747&rft.pages=739-747&rft.issn=0749-6419&rft.eissn=1879-2154&rft.coden=IJPLER&rft_id=info:doi/10.1016/j.ijplas.2010.09.003&rft_dat=%3Cproquest_cross%3E875062777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875062777&rft_id=info:pmid/&rft_els_id=S0749641910001294&rfr_iscdi=true