Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems
Resource management systems (RMS) are an important component in heterogeneous computing (HC) systems. One of the jobs of an RMS is the mapping of arriving tasks onto the machines of the HC system. Many different mapping heuristics have been proposed in recent years. However, most of these heuristics...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2008-12, Vol.19 (12), p.1671-1682 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1682 |
---|---|
container_issue | 12 |
container_start_page | 1671 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 19 |
creator | Al-Azzoni, I. Down, D.G. |
description | Resource management systems (RMS) are an important component in heterogeneous computing (HC) systems. One of the jobs of an RMS is the mapping of arriving tasks onto the machines of the HC system. Many different mapping heuristics have been proposed in recent years. However, most of these heuristics suffer from several limitations. One of these limitations is the performance degradation that results from using outdated global information about the status of all machines in the HC system. This paper proposes several heuristics which address this limitation by only requiring partial information in making the mapping decisions. These heuristics utilize the solution to a linear programming (LP) problem which maximizes the system capacity. Simulation results show that our heuristics perform very competitively while requiring dramatically less information. |
doi_str_mv | 10.1109/TPDS.2008.59 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875054740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4492769</ieee_id><sourcerecordid>34441305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-13be58aedb39150d8353accd3362038f82e77ae088fb79e3617aee55251de9fd3</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBeAIgQQUNjYWiwEWUq5fiT1CeUqVQGqZLTe-gUCTFDsZ-u9xKGJggMUP-dPRtU6SHFEYUwr6Yv50PRszADWWeivZo1KqlFHFt-MZhEw1o3o32Q_hDYAKCWIvcdOqQevJk29fvK3rqnlJr2xARy7Lsmqqbk1mxSu6fhlfSFuSh8bhCuPSdGRuw3sgbUPuscMYgA22fSCTtl713eBn69BhHQ6SndIuAx5-76Pk-fZmPrlPp493D5PLaVrwPO9SyhcolUW34JpKcIpLbovCcZ4x4KpUDPPcIihVLnKNPKPxhlIySR3q0vFRcrbJXfn2o8fQmboKBS6X9mswoyEmZQqyf6XKJUiRC4jy9E_JhRCUg4zw5Bd8a3vfxP8aTRlTnAod0fkGFb4NwWNpVr6qrV8bCmbo0AwdmqFDIwd-vOEVIv5QITTLM80_ARchl7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912283149</pqid></control><display><type>article</type><title>Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Al-Azzoni, I. ; Down, D.G.</creator><creatorcontrib>Al-Azzoni, I. ; Down, D.G.</creatorcontrib><description>Resource management systems (RMS) are an important component in heterogeneous computing (HC) systems. One of the jobs of an RMS is the mapping of arriving tasks onto the machines of the HC system. Many different mapping heuristics have been proposed in recent years. However, most of these heuristics suffer from several limitations. One of these limitations is the performance degradation that results from using outdated global information about the status of all machines in the HC system. This paper proposes several heuristics which address this limitation by only requiring partial information in making the mapping decisions. These heuristics utilize the solution to a linear programming (LP) problem which maximizes the system capacity. Simulation results show that our heuristics perform very competitively while requiring dramatically less information.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2008.59</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; Availability ; Computation ; Computational modeling ; Computer applications ; Computer networks ; Computer simulation ; Degradation ; distributed systems ; heterogeneous processors ; Heuristic ; Linear programming ; load balancing ; Load management ; Mapping ; Processor scheduling ; Queueing analysis ; queueing theory ; Resource management ; Resources management ; Scheduling ; Tasks</subject><ispartof>IEEE transactions on parallel and distributed systems, 2008-12, Vol.19 (12), p.1671-1682</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-13be58aedb39150d8353accd3362038f82e77ae088fb79e3617aee55251de9fd3</citedby><cites>FETCH-LOGICAL-c377t-13be58aedb39150d8353accd3362038f82e77ae088fb79e3617aee55251de9fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4492769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4492769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Azzoni, I.</creatorcontrib><creatorcontrib>Down, D.G.</creatorcontrib><title>Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Resource management systems (RMS) are an important component in heterogeneous computing (HC) systems. One of the jobs of an RMS is the mapping of arriving tasks onto the machines of the HC system. Many different mapping heuristics have been proposed in recent years. However, most of these heuristics suffer from several limitations. One of these limitations is the performance degradation that results from using outdated global information about the status of all machines in the HC system. This paper proposes several heuristics which address this limitation by only requiring partial information in making the mapping decisions. These heuristics utilize the solution to a linear programming (LP) problem which maximizes the system capacity. Simulation results show that our heuristics perform very competitively while requiring dramatically less information.</description><subject>Affinity</subject><subject>Availability</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>distributed systems</subject><subject>heterogeneous processors</subject><subject>Heuristic</subject><subject>Linear programming</subject><subject>load balancing</subject><subject>Load management</subject><subject>Mapping</subject><subject>Processor scheduling</subject><subject>Queueing analysis</subject><subject>queueing theory</subject><subject>Resource management</subject><subject>Resources management</subject><subject>Scheduling</subject><subject>Tasks</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAUBeAIgQQUNjYWiwEWUq5fiT1CeUqVQGqZLTe-gUCTFDsZ-u9xKGJggMUP-dPRtU6SHFEYUwr6Yv50PRszADWWeivZo1KqlFHFt-MZhEw1o3o32Q_hDYAKCWIvcdOqQevJk29fvK3rqnlJr2xARy7Lsmqqbk1mxSu6fhlfSFuSh8bhCuPSdGRuw3sgbUPuscMYgA22fSCTtl713eBn69BhHQ6SndIuAx5-76Pk-fZmPrlPp493D5PLaVrwPO9SyhcolUW34JpKcIpLbovCcZ4x4KpUDPPcIihVLnKNPKPxhlIySR3q0vFRcrbJXfn2o8fQmboKBS6X9mswoyEmZQqyf6XKJUiRC4jy9E_JhRCUg4zw5Bd8a3vfxP8aTRlTnAod0fkGFb4NwWNpVr6qrV8bCmbo0AwdmqFDIwd-vOEVIv5QITTLM80_ARchl7c</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Al-Azzoni, I.</creator><creator>Down, D.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081201</creationdate><title>Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems</title><author>Al-Azzoni, I. ; Down, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-13be58aedb39150d8353accd3362038f82e77ae088fb79e3617aee55251de9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Affinity</topic><topic>Availability</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>distributed systems</topic><topic>heterogeneous processors</topic><topic>Heuristic</topic><topic>Linear programming</topic><topic>load balancing</topic><topic>Load management</topic><topic>Mapping</topic><topic>Processor scheduling</topic><topic>Queueing analysis</topic><topic>queueing theory</topic><topic>Resource management</topic><topic>Resources management</topic><topic>Scheduling</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Azzoni, I.</creatorcontrib><creatorcontrib>Down, D.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Azzoni, I.</au><au>Down, D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>19</volume><issue>12</issue><spage>1671</spage><epage>1682</epage><pages>1671-1682</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Resource management systems (RMS) are an important component in heterogeneous computing (HC) systems. One of the jobs of an RMS is the mapping of arriving tasks onto the machines of the HC system. Many different mapping heuristics have been proposed in recent years. However, most of these heuristics suffer from several limitations. One of these limitations is the performance degradation that results from using outdated global information about the status of all machines in the HC system. This paper proposes several heuristics which address this limitation by only requiring partial information in making the mapping decisions. These heuristics utilize the solution to a linear programming (LP) problem which maximizes the system capacity. Simulation results show that our heuristics perform very competitively while requiring dramatically less information.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2008.59</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2008-12, Vol.19 (12), p.1671-1682 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_miscellaneous_875054740 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity Availability Computation Computational modeling Computer applications Computer networks Computer simulation Degradation distributed systems heterogeneous processors Heuristic Linear programming load balancing Load management Mapping Processor scheduling Queueing analysis queueing theory Resource management Resources management Scheduling Tasks |
title | Linear Programming-Based Affinity Scheduling of Independent Tasks on Heterogeneous Computing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Programming-Based%20Affinity%20Scheduling%20of%20Independent%20Tasks%20on%20Heterogeneous%20Computing%20Systems&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Al-Azzoni,%20I.&rft.date=2008-12-01&rft.volume=19&rft.issue=12&rft.spage=1671&rft.epage=1682&rft.pages=1671-1682&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2008.59&rft_dat=%3Cproquest_RIE%3E34441305%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912283149&rft_id=info:pmid/&rft_ieee_id=4492769&rfr_iscdi=true |