Routing in Large-Scale Wireless Mesh Networks Using Temperature Fields

Many wireless mesh networks are based on unicast routing protocols even though those protocols do not provide a particularly good fit for such scenarios. In this article, we report about an alternative routing paradigm, tailor-made for large multihop wireless mesh networks: field-based anycast routi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE network 2008-01, Vol.22 (1), p.25-31
Hauptverfasser: Baumann, R., Heimlicher, S., Plattner, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many wireless mesh networks are based on unicast routing protocols even though those protocols do not provide a particularly good fit for such scenarios. In this article, we report about an alternative routing paradigm, tailor-made for large multihop wireless mesh networks: field-based anycast routing. In particular, we present HEAT, a routing protocol based on this paradigm. In contrast to previous protocols, HEAT requires communication only between neighboring nodes. The underlying routing concept is a field similar to a temperature field in thermal physics. In extensive simulation experiments, we found that HEAT has excellent scalability properties due to a fully distributed implementation, and it provides much more robust routes than the unicast protocols, AODV and OLSR. As a consequence, in large-scale mobile scenarios, the packet delivery ratio with HEAT is more than two times higher, compared to AODV or OLSR. These promising results indicate that HEAT is suitable for large-scale wireless mesh networks that cover entire cities.
ISSN:0890-8044
1558-156X
DOI:10.1109/MNET.2008.4435899