Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs
Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when str...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2008-03, Vol.29 (3), p.262-264 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 3 |
container_start_page | 262 |
container_title | IEEE electron device letters |
container_volume | 29 |
creator | Mishra, R. Ioannou, D.E. Mitra, S. Gauthier, R. |
description | Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias. |
doi_str_mv | 10.1109/LED.2007.915382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875050271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4441941</ieee_id><sourcerecordid>875050271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</originalsourceid><addsrcrecordid>eNp9kT1Pw0AMhk8IJMrHzMByQgKmFPs-cslIS4FKhQ6F-XRNfCgoTUouHfj3XCliYGCybD-vJeth7AxhiAj5zWxyNxQAZpijlpnYYwPUOktAp3KfDcAoTCRCesiOQngHQKWMGrCnifdU9Lz1_L5uXV81b8moLT-5a0q-6DsKgY8qF3jb8OfRy_R7_jiebvtUJ82KL-ZTvn6aL-4nL-GEHXhXBzr9qcfsNY7Hj8ls_jAd386SQmbYJ8YjqeUyVxn6DKh0zgACkFmSSjOhtfeKpCYfcQVLV8qiFKkvSnRaOyB5zK53d9dd-7Gh0NtVFQqqa9dQuwk2Mxo0CIORvPqXlEoDpqmJ4MUf8L3ddE38wuYohFZZLiN0s4OKrg2hI2_XXbVy3adFsFsLNlqwWwt2ZyEmLn_OulC42neuKarwGxPRg5ZCR-58x1VE9LtWSmGuUH4BE8CLdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912254893</pqid></control><display><type>article</type><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</creator><creatorcontrib>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</creatorcontrib><description>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2007.915382</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bias ; Concurrent HCI-NBTI ; Degradation ; Devices ; Drains ; Electric potential ; Electronics ; Exact sciences and technology ; Hot carrier injection ; hot carrier injection (HCI) ; Human computer interaction ; MOSFETs ; Negative bias temperature instability ; negative bias temperature instability (NBTI) ; Niobium base alloys ; Niobium compounds ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; Stress ; Stresses ; Titanium compounds ; Transistors ; Voltage</subject><ispartof>IEEE electron device letters, 2008-03, Vol.29 (3), p.262-264</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</citedby><cites>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4441941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4441941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20145325$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Ioannou, D.E.</creatorcontrib><creatorcontrib>Mitra, S.</creatorcontrib><creatorcontrib>Gauthier, R.</creatorcontrib><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</description><subject>Applied sciences</subject><subject>Bias</subject><subject>Concurrent HCI-NBTI</subject><subject>Degradation</subject><subject>Devices</subject><subject>Drains</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hot carrier injection</subject><subject>hot carrier injection (HCI)</subject><subject>Human computer interaction</subject><subject>MOSFETs</subject><subject>Negative bias temperature instability</subject><subject>negative bias temperature instability (NBTI)</subject><subject>Niobium base alloys</subject><subject>Niobium compounds</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>Stress</subject><subject>Stresses</subject><subject>Titanium compounds</subject><subject>Transistors</subject><subject>Voltage</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1Pw0AMhk8IJMrHzMByQgKmFPs-cslIS4FKhQ6F-XRNfCgoTUouHfj3XCliYGCybD-vJeth7AxhiAj5zWxyNxQAZpijlpnYYwPUOktAp3KfDcAoTCRCesiOQngHQKWMGrCnifdU9Lz1_L5uXV81b8moLT-5a0q-6DsKgY8qF3jb8OfRy_R7_jiebvtUJ82KL-ZTvn6aL-4nL-GEHXhXBzr9qcfsNY7Hj8ls_jAd386SQmbYJ8YjqeUyVxn6DKh0zgACkFmSSjOhtfeKpCYfcQVLV8qiFKkvSnRaOyB5zK53d9dd-7Gh0NtVFQqqa9dQuwk2Mxo0CIORvPqXlEoDpqmJ4MUf8L3ddE38wuYohFZZLiN0s4OKrg2hI2_XXbVy3adFsFsLNlqwWwt2ZyEmLn_OulC42neuKarwGxPRg5ZCR-58x1VE9LtWSmGuUH4BE8CLdQ</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Mishra, R.</creator><creator>Ioannou, D.E.</creator><creator>Mitra, S.</creator><creator>Gauthier, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><author>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bias</topic><topic>Concurrent HCI-NBTI</topic><topic>Degradation</topic><topic>Devices</topic><topic>Drains</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hot carrier injection</topic><topic>hot carrier injection (HCI)</topic><topic>Human computer interaction</topic><topic>MOSFETs</topic><topic>Negative bias temperature instability</topic><topic>negative bias temperature instability (NBTI)</topic><topic>Niobium base alloys</topic><topic>Niobium compounds</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>Stress</topic><topic>Stresses</topic><topic>Titanium compounds</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Ioannou, D.E.</creatorcontrib><creatorcontrib>Mitra, S.</creatorcontrib><creatorcontrib>Gauthier, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, R.</au><au>Ioannou, D.E.</au><au>Mitra, S.</au><au>Gauthier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>29</volume><issue>3</issue><spage>262</spage><epage>264</epage><pages>262-264</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2007.915382</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2008-03, Vol.29 (3), p.262-264 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_miscellaneous_875050271 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bias Concurrent HCI-NBTI Degradation Devices Drains Electric potential Electronics Exact sciences and technology Hot carrier injection hot carrier injection (HCI) Human computer interaction MOSFETs Negative bias temperature instability negative bias temperature instability (NBTI) Niobium base alloys Niobium compounds Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon on insulator technology silicon-on-insulator (SOI) Stress Stresses Titanium compounds Transistors Voltage |
title | Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Floating-Body%20and%20Stress%20Bias%20on%20NBTI%20and%20HCI%20on%2065-nm%20SOI%20pMOSFETs&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Mishra,%20R.&rft.date=2008-03-01&rft.volume=29&rft.issue=3&rft.spage=262&rft.epage=264&rft.pages=262-264&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2007.915382&rft_dat=%3Cproquest_RIE%3E875050271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912254893&rft_id=info:pmid/&rft_ieee_id=4441941&rfr_iscdi=true |