Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs

Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2008-03, Vol.29 (3), p.262-264
Hauptverfasser: Mishra, R., Ioannou, D.E., Mitra, S., Gauthier, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 3
container_start_page 262
container_title IEEE electron device letters
container_volume 29
creator Mishra, R.
Ioannou, D.E.
Mitra, S.
Gauthier, R.
description Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.
doi_str_mv 10.1109/LED.2007.915382
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875050271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4441941</ieee_id><sourcerecordid>875050271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</originalsourceid><addsrcrecordid>eNp9kT1Pw0AMhk8IJMrHzMByQgKmFPs-cslIS4FKhQ6F-XRNfCgoTUouHfj3XCliYGCybD-vJeth7AxhiAj5zWxyNxQAZpijlpnYYwPUOktAp3KfDcAoTCRCesiOQngHQKWMGrCnifdU9Lz1_L5uXV81b8moLT-5a0q-6DsKgY8qF3jb8OfRy_R7_jiebvtUJ82KL-ZTvn6aL-4nL-GEHXhXBzr9qcfsNY7Hj8ls_jAd386SQmbYJ8YjqeUyVxn6DKh0zgACkFmSSjOhtfeKpCYfcQVLV8qiFKkvSnRaOyB5zK53d9dd-7Gh0NtVFQqqa9dQuwk2Mxo0CIORvPqXlEoDpqmJ4MUf8L3ddE38wuYohFZZLiN0s4OKrg2hI2_XXbVy3adFsFsLNlqwWwt2ZyEmLn_OulC42neuKarwGxPRg5ZCR-58x1VE9LtWSmGuUH4BE8CLdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912254893</pqid></control><display><type>article</type><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</creator><creatorcontrib>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</creatorcontrib><description>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2007.915382</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bias ; Concurrent HCI-NBTI ; Degradation ; Devices ; Drains ; Electric potential ; Electronics ; Exact sciences and technology ; Hot carrier injection ; hot carrier injection (HCI) ; Human computer interaction ; MOSFETs ; Negative bias temperature instability ; negative bias temperature instability (NBTI) ; Niobium base alloys ; Niobium compounds ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon on insulator technology ; silicon-on-insulator (SOI) ; Stress ; Stresses ; Titanium compounds ; Transistors ; Voltage</subject><ispartof>IEEE electron device letters, 2008-03, Vol.29 (3), p.262-264</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</citedby><cites>FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4441941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4441941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20145325$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Ioannou, D.E.</creatorcontrib><creatorcontrib>Mitra, S.</creatorcontrib><creatorcontrib>Gauthier, R.</creatorcontrib><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</description><subject>Applied sciences</subject><subject>Bias</subject><subject>Concurrent HCI-NBTI</subject><subject>Degradation</subject><subject>Devices</subject><subject>Drains</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hot carrier injection</subject><subject>hot carrier injection (HCI)</subject><subject>Human computer interaction</subject><subject>MOSFETs</subject><subject>Negative bias temperature instability</subject><subject>negative bias temperature instability (NBTI)</subject><subject>Niobium base alloys</subject><subject>Niobium compounds</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI)</subject><subject>Stress</subject><subject>Stresses</subject><subject>Titanium compounds</subject><subject>Transistors</subject><subject>Voltage</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1Pw0AMhk8IJMrHzMByQgKmFPs-cslIS4FKhQ6F-XRNfCgoTUouHfj3XCliYGCybD-vJeth7AxhiAj5zWxyNxQAZpijlpnYYwPUOktAp3KfDcAoTCRCesiOQngHQKWMGrCnifdU9Lz1_L5uXV81b8moLT-5a0q-6DsKgY8qF3jb8OfRy_R7_jiebvtUJ82KL-ZTvn6aL-4nL-GEHXhXBzr9qcfsNY7Hj8ls_jAd386SQmbYJ8YjqeUyVxn6DKh0zgACkFmSSjOhtfeKpCYfcQVLV8qiFKkvSnRaOyB5zK53d9dd-7Gh0NtVFQqqa9dQuwk2Mxo0CIORvPqXlEoDpqmJ4MUf8L3ddE38wuYohFZZLiN0s4OKrg2hI2_XXbVy3adFsFsLNlqwWwt2ZyEmLn_OulC42neuKarwGxPRg5ZCR-58x1VE9LtWSmGuUH4BE8CLdQ</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Mishra, R.</creator><creator>Ioannou, D.E.</creator><creator>Mitra, S.</creator><creator>Gauthier, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</title><author>Mishra, R. ; Ioannou, D.E. ; Mitra, S. ; Gauthier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7f1e4bb9481f80edaa70100e7be468255ff4e35efc3840bad3cd26fcd1a55a0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bias</topic><topic>Concurrent HCI-NBTI</topic><topic>Degradation</topic><topic>Devices</topic><topic>Drains</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hot carrier injection</topic><topic>hot carrier injection (HCI)</topic><topic>Human computer interaction</topic><topic>MOSFETs</topic><topic>Negative bias temperature instability</topic><topic>negative bias temperature instability (NBTI)</topic><topic>Niobium base alloys</topic><topic>Niobium compounds</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI)</topic><topic>Stress</topic><topic>Stresses</topic><topic>Titanium compounds</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, R.</creatorcontrib><creatorcontrib>Ioannou, D.E.</creatorcontrib><creatorcontrib>Mitra, S.</creatorcontrib><creatorcontrib>Gauthier, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, R.</au><au>Ioannou, D.E.</au><au>Mitra, S.</au><au>Gauthier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>29</volume><issue>3</issue><spage>262</spage><epage>264</epage><pages>262-264</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Grounded-body (GB) core-logic/high-speed (HS) and input/output (I/O) silicon-on-insulator pMOSFETs from 65-nm technology are shown to degrade more than floating-body (FB) devices under negative bias temperature instability (NBTI) stress. However, in both cases, worst case degradation occurs when stressed under equal gate and drain voltages (V g = V d ), whereby degradation is simultaneously induced by both NBTI and hot carrier injection (HCI) simultaneously ("concurrent HCI-NBTI"), the relative importance of each mechanism depending on the type of device and the bias level. The degradation of I/O pMOSFETs stressed under V g = V d at room temperature shows predominantly NBTI-like behavior at higher stress voltages, whereas it shows concurrent HCI-NBTI behavior at lower stress voltages. By contrast, the degradation of HS pMOSFETs stressed under V g = V d shows concurrent HCI-NBTI behavior over the entire stress bias range. In both cases, FB devices degrade more than GB devices for higher stress voltage values, but the FB effects weaken and the degradations become comparable for lower stress bias.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2007.915382</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2008-03, Vol.29 (3), p.262-264
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_miscellaneous_875050271
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bias
Concurrent HCI-NBTI
Degradation
Devices
Drains
Electric potential
Electronics
Exact sciences and technology
Hot carrier injection
hot carrier injection (HCI)
Human computer interaction
MOSFETs
Negative bias temperature instability
negative bias temperature instability (NBTI)
Niobium base alloys
Niobium compounds
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon on insulator technology
silicon-on-insulator (SOI)
Stress
Stresses
Titanium compounds
Transistors
Voltage
title Effect of Floating-Body and Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Floating-Body%20and%20Stress%20Bias%20on%20NBTI%20and%20HCI%20on%2065-nm%20SOI%20pMOSFETs&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Mishra,%20R.&rft.date=2008-03-01&rft.volume=29&rft.issue=3&rft.spage=262&rft.epage=264&rft.pages=262-264&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2007.915382&rft_dat=%3Cproquest_RIE%3E875050271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912254893&rft_id=info:pmid/&rft_ieee_id=4441941&rfr_iscdi=true