A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-11, Vol.57 (11), p.4418-4432
Hauptverfasser: CHAN, Tsung-Han, CHI, Chong-Yung, HUANG, Yu-Min, MA, Wing-Kin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4432
container_issue 11
container_start_page 4418
container_title IEEE transactions on signal processing
container_volume 57
creator CHAN, Tsung-Han
CHI, Chong-Yung
HUANG, Yu-Min
MA, Wing-Kin
description Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods.
doi_str_mv 10.1109/TSP.2009.2025802
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875040707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089462</ieee_id><sourcerecordid>2315461181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33</originalsourceid><addsrcrecordid>eNp9kctLxDAQxoso-LwLXoqgnqqTR5PmuC6-QFHwgRcp2TTRSNrUZCvuf2_WXTx48DIzML_5GL4vy3YRHCME4uTh_u4YA4hUcFkBXsk2kKCoAMrZapqhJEVZ8ef1bDPGdwBEqWAb2csoH_vuU3_lo066WbSxOJVRN_mN7Ww7tMWTd0Or87NOOR9t95rf27Z3c969-mCnb21ufMgvZ70OsddqGqTLH7vWfiV4O1sz0kW9s-xb2eP52cP4sri-vbgaj64Llb6YFhTjCceNMabEgnGKgCtFMGFy_v1ES6GFMFiWFUGaN1I1ShkGVBrUAEwI2cqOFrp98B-DjtO6tVFp52Sn_RDripdAgQNP5OG_JEmuVIigBO7_Ad_9EJJHSY0lx7n4UYMFpIKPMWhT98G2MsxqBPU8ljrFUs9jqZexpJODpa6MSjoTZKds_L3DiQPGIHF7C85qrX_XJVSCMky-AXBNlbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861107907</pqid></control><display><type>article</type><title>A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing</title><source>IEEE Electronic Library (IEL)</source><creator>CHAN, Tsung-Han ; CHI, Chong-Yung ; HUANG, Yu-Min ; MA, Wing-Kin</creator><creatorcontrib>CHAN, Tsung-Han ; CHI, Chong-Yung ; HUANG, Yu-Min ; MA, Wing-Kin</creatorcontrib><description>Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2025802</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation ; Computer simulation ; Convex analysis ; convex optimization ; Councils ; Criteria ; Data mining ; Exact sciences and technology ; Formulations ; Hyperspectral imaging ; Hyperspectral sensors ; hyperspectral unmixing ; Information, signal and communications theory ; Layout ; linear programming ; Minimization methods ; minimum-volume enclosing simplex ; Miscellaneous ; Monitoring ; Monte Carlo methods ; Pixels ; Principal component analysis ; Signal processing ; Signal processing algorithms ; Solvers ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-11, Vol.57 (11), p.4418-4432</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33</citedby><cites>FETCH-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22020660$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAN, Tsung-Han</creatorcontrib><creatorcontrib>CHI, Chong-Yung</creatorcontrib><creatorcontrib>HUANG, Yu-Min</creatorcontrib><creatorcontrib>MA, Wing-Kin</creatorcontrib><title>A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Convex analysis</subject><subject>convex optimization</subject><subject>Councils</subject><subject>Criteria</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>hyperspectral unmixing</subject><subject>Information, signal and communications theory</subject><subject>Layout</subject><subject>linear programming</subject><subject>Minimization methods</subject><subject>minimum-volume enclosing simplex</subject><subject>Miscellaneous</subject><subject>Monitoring</subject><subject>Monte Carlo methods</subject><subject>Pixels</subject><subject>Principal component analysis</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Solvers</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLxDAQxoso-LwLXoqgnqqTR5PmuC6-QFHwgRcp2TTRSNrUZCvuf2_WXTx48DIzML_5GL4vy3YRHCME4uTh_u4YA4hUcFkBXsk2kKCoAMrZapqhJEVZ8ef1bDPGdwBEqWAb2csoH_vuU3_lo066WbSxOJVRN_mN7Ww7tMWTd0Or87NOOR9t95rf27Z3c969-mCnb21ufMgvZ70OsddqGqTLH7vWfiV4O1sz0kW9s-xb2eP52cP4sri-vbgaj64Llb6YFhTjCceNMabEgnGKgCtFMGFy_v1ES6GFMFiWFUGaN1I1ShkGVBrUAEwI2cqOFrp98B-DjtO6tVFp52Sn_RDripdAgQNP5OG_JEmuVIigBO7_Ad_9EJJHSY0lx7n4UYMFpIKPMWhT98G2MsxqBPU8ljrFUs9jqZexpJODpa6MSjoTZKds_L3DiQPGIHF7C85qrX_XJVSCMky-AXBNlbU</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>CHAN, Tsung-Han</creator><creator>CHI, Chong-Yung</creator><creator>HUANG, Yu-Min</creator><creator>MA, Wing-Kin</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing</title><author>CHAN, Tsung-Han ; CHI, Chong-Yung ; HUANG, Yu-Min ; MA, Wing-Kin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-422b72dfff529674107cc3236a0476bea9e99f2a5831e7dacdccf604af1d00b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Convex analysis</topic><topic>convex optimization</topic><topic>Councils</topic><topic>Criteria</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>hyperspectral unmixing</topic><topic>Information, signal and communications theory</topic><topic>Layout</topic><topic>linear programming</topic><topic>Minimization methods</topic><topic>minimum-volume enclosing simplex</topic><topic>Miscellaneous</topic><topic>Monitoring</topic><topic>Monte Carlo methods</topic><topic>Pixels</topic><topic>Principal component analysis</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Solvers</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAN, Tsung-Han</creatorcontrib><creatorcontrib>CHI, Chong-Yung</creatorcontrib><creatorcontrib>HUANG, Yu-Min</creatorcontrib><creatorcontrib>MA, Wing-Kin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHAN, Tsung-Han</au><au>CHI, Chong-Yung</au><au>HUANG, Yu-Min</au><au>MA, Wing-Kin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>57</volume><issue>11</issue><spage>4418</spage><epage>4432</epage><pages>4418-4432</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2025802</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-11, Vol.57 (11), p.4418-4432
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_875040707
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Approximation
Computer simulation
Convex analysis
convex optimization
Councils
Criteria
Data mining
Exact sciences and technology
Formulations
Hyperspectral imaging
Hyperspectral sensors
hyperspectral unmixing
Information, signal and communications theory
Layout
linear programming
Minimization methods
minimum-volume enclosing simplex
Miscellaneous
Monitoring
Monte Carlo methods
Pixels
Principal component analysis
Signal processing
Signal processing algorithms
Solvers
Studies
Telecommunications and information theory
title A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Convex%20Analysis-Based%20Minimum-Volume%20Enclosing%20Simplex%20Algorithm%20for%20Hyperspectral%20Unmixing&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=CHAN,%20Tsung-Han&rft.date=2009-11-01&rft.volume=57&rft.issue=11&rft.spage=4418&rft.epage=4432&rft.pages=4418-4432&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2025802&rft_dat=%3Cproquest_RIE%3E2315461181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861107907&rft_id=info:pmid/&rft_ieee_id=5089462&rfr_iscdi=true