A Nonfeasible Gradient Projection Recurrent Neural Network for Equality-Constrained Optimization Problems

In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-10, Vol.19 (10), p.1665-1677
Hauptverfasser: Barbarosou, M.P., Maratos, N.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t rarr infin. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2008.2000993