Ultrafine Barium Titanate Powders via Microemulsion Processing Routes

Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite bari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1999-04, Vol.82 (4), p.873-881
Hauptverfasser: Wang, John, Fang, Jiye, Ng, Ser-Choon, Gan, Leong-Ming, Chew, Chwee-Har, Wang, Xianbin, Shen, Zexiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 4
container_start_page 873
container_title Journal of the American Ceramic Society
container_volume 82
creator Wang, John
Fang, Jiye
Ng, Ser-Choon
Gan, Leong-Ming
Chew, Chwee-Har
Wang, Xianbin
Shen, Zexiang
description Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at >700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.
doi_str_mv 10.1111/j.1151-2916.1999.tb01848.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875036638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875036638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhi3EJErhP0QTgqt0_oi_uEGjlMFWRoU24M5ynWPkkibDTrbu3-Oo1ZC4QMKydGT58Xt83hehY4JnJK-TTS6clFQTMSNa61m_xkRVarZ7hCaEH64eownGmJZSUfwEPU1pk49Eq2qCFtdNH60PLRRvbQzDtrgKvW1tD8Wqu6shpuI22OJTcLGD7dCk0LXFKnYOUgrtj-JLN_SQnqEjb5sEzw91iq7fL67mH8rl57OP89Nl6XiFWelqLknta-mVp1hzhq2ylRDUQ034WqpaOWZVhTmsZZU3yxOAUyC0tJ4zNkWv9ro3sfs1QOrNNiQHTWNb6IZklOSYCcFUJl_-k6Qiu0W1yODxX-CmG2KbpzCUSKUrpmmGXu-h7EJKEby5iWFr470h2IxBmI0ZgzCj22YMwhyCMLv8-MWhg03ONj7a1oX0R0FhKvK3p-jNHrsLDdz_RwNzfjpfKDm6U-4VQuph96Bg408jJJPcfLs8M8t3q4tLvvpuvrLfaaartQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217894392</pqid></control><display><type>article</type><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</creator><creatorcontrib>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</creatorcontrib><description>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at &gt;700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1999.tb01848.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Westerville, Ohio: American Ceramics Society</publisher><subject>Applied sciences ; Barium titanates ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramics ; Chemical industry and chemicals ; Chemistry ; Colloidal state and disperse state ; Electrotechnical and electronic ceramics ; Exact sciences and technology ; General and physical chemistry ; Microemulsions ; Powders ; Technical ceramics</subject><ispartof>Journal of the American Ceramic Society, 1999-04, Vol.82 (4), p.873-881</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Ceramic Society Apr 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</citedby><cites>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1999.tb01848.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1999.tb01848.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1802650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Fang, Jiye</creatorcontrib><creatorcontrib>Ng, Ser-Choon</creatorcontrib><creatorcontrib>Gan, Leong-Ming</creatorcontrib><creatorcontrib>Chew, Chwee-Har</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><title>Journal of the American Ceramic Society</title><description>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at &gt;700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</description><subject>Applied sciences</subject><subject>Barium titanates</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microemulsions</subject><subject>Powders</subject><subject>Technical ceramics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVkV1v0zAUhi3EJErhP0QTgqt0_oi_uEGjlMFWRoU24M5ynWPkkibDTrbu3-Oo1ZC4QMKydGT58Xt83hehY4JnJK-TTS6clFQTMSNa61m_xkRVarZ7hCaEH64eownGmJZSUfwEPU1pk49Eq2qCFtdNH60PLRRvbQzDtrgKvW1tD8Wqu6shpuI22OJTcLGD7dCk0LXFKnYOUgrtj-JLN_SQnqEjb5sEzw91iq7fL67mH8rl57OP89Nl6XiFWelqLknta-mVp1hzhq2ylRDUQ034WqpaOWZVhTmsZZU3yxOAUyC0tJ4zNkWv9ro3sfs1QOrNNiQHTWNb6IZklOSYCcFUJl_-k6Qiu0W1yODxX-CmG2KbpzCUSKUrpmmGXu-h7EJKEby5iWFr470h2IxBmI0ZgzCj22YMwhyCMLv8-MWhg03ONj7a1oX0R0FhKvK3p-jNHrsLDdz_RwNzfjpfKDm6U-4VQuph96Bg408jJJPcfLs8M8t3q4tLvvpuvrLfaaartQ</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>Wang, John</creator><creator>Fang, Jiye</creator><creator>Ng, Ser-Choon</creator><creator>Gan, Leong-Ming</creator><creator>Chew, Chwee-Har</creator><creator>Wang, Xianbin</creator><creator>Shen, Zexiang</creator><general>American Ceramics Society</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199904</creationdate><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><author>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Barium titanates</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microemulsions</topic><topic>Powders</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Fang, Jiye</creatorcontrib><creatorcontrib>Ng, Ser-Choon</creatorcontrib><creatorcontrib>Gan, Leong-Ming</creatorcontrib><creatorcontrib>Chew, Chwee-Har</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, John</au><au>Fang, Jiye</au><au>Ng, Ser-Choon</au><au>Gan, Leong-Ming</au><au>Chew, Chwee-Har</au><au>Wang, Xianbin</au><au>Shen, Zexiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1999-04</date><risdate>1999</risdate><volume>82</volume><issue>4</issue><spage>873</spage><epage>881</epage><pages>873-881</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at &gt;700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</abstract><cop>Westerville, Ohio</cop><pub>American Ceramics Society</pub><doi>10.1111/j.1151-2916.1999.tb01848.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1999-04, Vol.82 (4), p.873-881
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_875036638
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Barium titanates
Building materials. Ceramics. Glasses
Ceramic industries
Ceramics
Chemical industry and chemicals
Chemistry
Colloidal state and disperse state
Electrotechnical and electronic ceramics
Exact sciences and technology
General and physical chemistry
Microemulsions
Powders
Technical ceramics
title Ultrafine Barium Titanate Powders via Microemulsion Processing Routes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafine%20Barium%20Titanate%20Powders%20via%20Microemulsion%20Processing%20Routes&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20John&rft.date=1999-04&rft.volume=82&rft.issue=4&rft.spage=873&rft.epage=881&rft.pages=873-881&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1999.tb01848.x&rft_dat=%3Cproquest_cross%3E875036638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217894392&rft_id=info:pmid/&rfr_iscdi=true