Ultrafine Barium Titanate Powders via Microemulsion Processing Routes
Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite bari...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1999-04, Vol.82 (4), p.873-881 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 4 |
container_start_page | 873 |
container_title | Journal of the American Ceramic Society |
container_volume | 82 |
creator | Wang, John Fang, Jiye Ng, Ser-Choon Gan, Leong-Ming Chew, Chwee-Har Wang, Xianbin Shen, Zexiang |
description | Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at >700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase. |
doi_str_mv | 10.1111/j.1151-2916.1999.tb01848.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875036638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>875036638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhi3EJErhP0QTgqt0_oi_uEGjlMFWRoU24M5ynWPkkibDTrbu3-Oo1ZC4QMKydGT58Xt83hehY4JnJK-TTS6clFQTMSNa61m_xkRVarZ7hCaEH64eownGmJZSUfwEPU1pk49Eq2qCFtdNH60PLRRvbQzDtrgKvW1tD8Wqu6shpuI22OJTcLGD7dCk0LXFKnYOUgrtj-JLN_SQnqEjb5sEzw91iq7fL67mH8rl57OP89Nl6XiFWelqLknta-mVp1hzhq2ylRDUQ034WqpaOWZVhTmsZZU3yxOAUyC0tJ4zNkWv9ro3sfs1QOrNNiQHTWNb6IZklOSYCcFUJl_-k6Qiu0W1yODxX-CmG2KbpzCUSKUrpmmGXu-h7EJKEby5iWFr470h2IxBmI0ZgzCj22YMwhyCMLv8-MWhg03ONj7a1oX0R0FhKvK3p-jNHrsLDdz_RwNzfjpfKDm6U-4VQuph96Bg408jJJPcfLs8M8t3q4tLvvpuvrLfaaartQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217894392</pqid></control><display><type>article</type><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</creator><creatorcontrib>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</creatorcontrib><description>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at >700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1999.tb01848.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Westerville, Ohio: American Ceramics Society</publisher><subject>Applied sciences ; Barium titanates ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramics ; Chemical industry and chemicals ; Chemistry ; Colloidal state and disperse state ; Electrotechnical and electronic ceramics ; Exact sciences and technology ; General and physical chemistry ; Microemulsions ; Powders ; Technical ceramics</subject><ispartof>Journal of the American Ceramic Society, 1999-04, Vol.82 (4), p.873-881</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Ceramic Society Apr 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</citedby><cites>FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1999.tb01848.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1999.tb01848.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1802650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Fang, Jiye</creatorcontrib><creatorcontrib>Ng, Ser-Choon</creatorcontrib><creatorcontrib>Gan, Leong-Ming</creatorcontrib><creatorcontrib>Chew, Chwee-Har</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><title>Journal of the American Ceramic Society</title><description>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at >700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</description><subject>Applied sciences</subject><subject>Barium titanates</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microemulsions</subject><subject>Powders</subject><subject>Technical ceramics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqVkV1v0zAUhi3EJErhP0QTgqt0_oi_uEGjlMFWRoU24M5ynWPkkibDTrbu3-Oo1ZC4QMKydGT58Xt83hehY4JnJK-TTS6clFQTMSNa61m_xkRVarZ7hCaEH64eownGmJZSUfwEPU1pk49Eq2qCFtdNH60PLRRvbQzDtrgKvW1tD8Wqu6shpuI22OJTcLGD7dCk0LXFKnYOUgrtj-JLN_SQnqEjb5sEzw91iq7fL67mH8rl57OP89Nl6XiFWelqLknta-mVp1hzhq2ylRDUQ034WqpaOWZVhTmsZZU3yxOAUyC0tJ4zNkWv9ro3sfs1QOrNNiQHTWNb6IZklOSYCcFUJl_-k6Qiu0W1yODxX-CmG2KbpzCUSKUrpmmGXu-h7EJKEby5iWFr470h2IxBmI0ZgzCj22YMwhyCMLv8-MWhg03ONj7a1oX0R0FhKvK3p-jNHrsLDdz_RwNzfjpfKDm6U-4VQuph96Bg408jJJPcfLs8M8t3q4tLvvpuvrLfaaartQ</recordid><startdate>199904</startdate><enddate>199904</enddate><creator>Wang, John</creator><creator>Fang, Jiye</creator><creator>Ng, Ser-Choon</creator><creator>Gan, Leong-Ming</creator><creator>Chew, Chwee-Har</creator><creator>Wang, Xianbin</creator><creator>Shen, Zexiang</creator><general>American Ceramics Society</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199904</creationdate><title>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</title><author>Wang, John ; Fang, Jiye ; Ng, Ser-Choon ; Gan, Leong-Ming ; Chew, Chwee-Har ; Wang, Xianbin ; Shen, Zexiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5403-cd571dfd7f8f209530a8a4662fed15b78d8c3a8405eb74b743551ec8e697af533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Barium titanates</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microemulsions</topic><topic>Powders</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Fang, Jiye</creatorcontrib><creatorcontrib>Ng, Ser-Choon</creatorcontrib><creatorcontrib>Gan, Leong-Ming</creatorcontrib><creatorcontrib>Chew, Chwee-Har</creatorcontrib><creatorcontrib>Wang, Xianbin</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, John</au><au>Fang, Jiye</au><au>Ng, Ser-Choon</au><au>Gan, Leong-Ming</au><au>Chew, Chwee-Har</au><au>Wang, Xianbin</au><au>Shen, Zexiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafine Barium Titanate Powders via Microemulsion Processing Routes</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1999-04</date><risdate>1999</risdate><volume>82</volume><issue>4</issue><spage>873</spage><epage>881</epage><pages>873-881</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Three processing routes have been used to prepare barium titanate powders, namely conventional coprecipitation, single‐microemulsion coprecipitation using diether oxalate as the precipitant, and double‐microemulsion coprecipitation using oxalic acid as the precipitant. A single‐phase perovskite barium titanate was obtained when the double‐microemulsion‐derived oxalate precursor was calcined for 2 h at a temperature of as low as 550°C, compared to 600°C required by the single‐microemulsion‐derived precursor. A calcination for 2 h at >700°C was required for the conventionally coprecipitated precursor in order to develop a predominant barium titanate phase. It was, however, impossible to eliminate the residual TiO2 impurity phase by raising the calcination temperature, up to 1000°C. The microemulsion‐derived barium titanate powders also demonstrated much better powder characteristics, such as more refined crystallite and particle sizes and a much lower degree of particle agglomeration, than those of the conventionally coprecipitated powder, although they contained ∼0.2 wt% BaCO3 as the impurity phase.</abstract><cop>Westerville, Ohio</cop><pub>American Ceramics Society</pub><doi>10.1111/j.1151-2916.1999.tb01848.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1999-04, Vol.82 (4), p.873-881 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_875036638 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Barium titanates Building materials. Ceramics. Glasses Ceramic industries Ceramics Chemical industry and chemicals Chemistry Colloidal state and disperse state Electrotechnical and electronic ceramics Exact sciences and technology General and physical chemistry Microemulsions Powders Technical ceramics |
title | Ultrafine Barium Titanate Powders via Microemulsion Processing Routes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafine%20Barium%20Titanate%20Powders%20via%20Microemulsion%20Processing%20Routes&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20John&rft.date=1999-04&rft.volume=82&rft.issue=4&rft.spage=873&rft.epage=881&rft.pages=873-881&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1999.tb01848.x&rft_dat=%3Cproquest_cross%3E875036638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217894392&rft_id=info:pmid/&rfr_iscdi=true |