Complete solution to a conjecture on the maximal energy of unicyclic graphs

For a given simple graph G , the energy of G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let P n ℓ be the unicyclic graph obtained by connecting a vertex of C ℓ with a leaf of P n − ℓ . In [G. Caporossi, D. Cvetković, I. Gutman, P. ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2011-07, Vol.32 (5), p.662-673
Hauptverfasser: Huo, Bofeng, Li, Xueliang, Shi, Yongtang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 5
container_start_page 662
container_title European journal of combinatorics
container_volume 32
creator Huo, Bofeng
Li, Xueliang
Shi, Yongtang
description For a given simple graph G , the energy of G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let P n ℓ be the unicyclic graph obtained by connecting a vertex of C ℓ with a leaf of P n − ℓ . In [G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996], Caporossi et al. conjectured that the unicyclic graph with maximal energy is C n if n ≤ 7 and n = 9 , 10 , 11 , 13 , 15 , and P n 6 for all other values of n . In this paper, by employing the Coulson integral formula and some knowledge of real analysis, especially by using certain combinatorial techniques, we completely solve this conjecture. However, it turns out that for n = 4 the conjecture is not true, and P 4 3 should be the unicyclic graph with maximal energy.
doi_str_mv 10.1016/j.ejc.2011.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_875027802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669811000400</els_id><sourcerecordid>875027802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a720af6955def1361331faa42451e3454d2a183127b6d77b6d9bc18e6f66759d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Ad5y89SaSdq0xZMsfuGCFz2HbDrdTWmbmrTi_vemrGcv84bhvYH3I-QGWAoM5F2bYmtSzgBSxtMoJ2QFrMqTqirglKwYxF3KqjwnFyG0LDpyIVbkbe36scMJaXDdPFk30MlRTY0bWjTT7JEupz3SXv_YXncUB_S7A3UNnQdrDqazhu68Hvfhipw1ugt4_aeX5PPp8WP9kmzen1_XD5vEiIJPiS44042s8rzGBoQEIaDROuNZDiiyPKu5hlIAL7ayLpZRbQ2UKBspi7yqxSW5Pf4dvfuaMUyqt8Fg1-kB3RxUWeSMFyXj0QlHp_EuBI-NGn0s4Q8KmFq4qVZFbmrhphhXUWLm_pjBWOHbolfBWBwM1tZHIqp29p_0LzWkdSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875027802</pqid></control><display><type>article</type><title>Complete solution to a conjecture on the maximal energy of unicyclic graphs</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huo, Bofeng ; Li, Xueliang ; Shi, Yongtang</creator><creatorcontrib>Huo, Bofeng ; Li, Xueliang ; Shi, Yongtang</creatorcontrib><description>For a given simple graph G , the energy of G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let P n ℓ be the unicyclic graph obtained by connecting a vertex of C ℓ with a leaf of P n − ℓ . In [G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996], Caporossi et al. conjectured that the unicyclic graph with maximal energy is C n if n ≤ 7 and n = 9 , 10 , 11 , 13 , 15 , and P n 6 for all other values of n . In this paper, by employing the Coulson integral formula and some knowledge of real analysis, especially by using certain combinatorial techniques, we completely solve this conjecture. However, it turns out that for n = 4 the conjecture is not true, and P 4 3 should be the unicyclic graph with maximal energy.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2011.02.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combinatorial analysis ; Eigenvalues ; Graphs ; Integrals ; Joining ; Mathematical models ; Searching</subject><ispartof>European journal of combinatorics, 2011-07, Vol.32 (5), p.662-673</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a720af6955def1361331faa42451e3454d2a183127b6d77b6d9bc18e6f66759d3</citedby><cites>FETCH-LOGICAL-c372t-a720af6955def1361331faa42451e3454d2a183127b6d77b6d9bc18e6f66759d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejc.2011.02.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huo, Bofeng</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><creatorcontrib>Shi, Yongtang</creatorcontrib><title>Complete solution to a conjecture on the maximal energy of unicyclic graphs</title><title>European journal of combinatorics</title><description>For a given simple graph G , the energy of G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let P n ℓ be the unicyclic graph obtained by connecting a vertex of C ℓ with a leaf of P n − ℓ . In [G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996], Caporossi et al. conjectured that the unicyclic graph with maximal energy is C n if n ≤ 7 and n = 9 , 10 , 11 , 13 , 15 , and P n 6 for all other values of n . In this paper, by employing the Coulson integral formula and some knowledge of real analysis, especially by using certain combinatorial techniques, we completely solve this conjecture. However, it turns out that for n = 4 the conjecture is not true, and P 4 3 should be the unicyclic graph with maximal energy.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Integrals</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Searching</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Ad5y89SaSdq0xZMsfuGCFz2HbDrdTWmbmrTi_vemrGcv84bhvYH3I-QGWAoM5F2bYmtSzgBSxtMoJ2QFrMqTqirglKwYxF3KqjwnFyG0LDpyIVbkbe36scMJaXDdPFk30MlRTY0bWjTT7JEupz3SXv_YXncUB_S7A3UNnQdrDqazhu68Hvfhipw1ugt4_aeX5PPp8WP9kmzen1_XD5vEiIJPiS44042s8rzGBoQEIaDROuNZDiiyPKu5hlIAL7ayLpZRbQ2UKBspi7yqxSW5Pf4dvfuaMUyqt8Fg1-kB3RxUWeSMFyXj0QlHp_EuBI-NGn0s4Q8KmFq4qVZFbmrhphhXUWLm_pjBWOHbolfBWBwM1tZHIqp29p_0LzWkdSU</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Huo, Bofeng</creator><creator>Li, Xueliang</creator><creator>Shi, Yongtang</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Complete solution to a conjecture on the maximal energy of unicyclic graphs</title><author>Huo, Bofeng ; Li, Xueliang ; Shi, Yongtang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a720af6955def1361331faa42451e3454d2a183127b6d77b6d9bc18e6f66759d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Integrals</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Bofeng</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><creatorcontrib>Shi, Yongtang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Bofeng</au><au>Li, Xueliang</au><au>Shi, Yongtang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete solution to a conjecture on the maximal energy of unicyclic graphs</atitle><jtitle>European journal of combinatorics</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>32</volume><issue>5</issue><spage>662</spage><epage>673</epage><pages>662-673</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>For a given simple graph G , the energy of G , denoted by E ( G ) , is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let P n ℓ be the unicyclic graph obtained by connecting a vertex of C ℓ with a leaf of P n − ℓ . In [G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996], Caporossi et al. conjectured that the unicyclic graph with maximal energy is C n if n ≤ 7 and n = 9 , 10 , 11 , 13 , 15 , and P n 6 for all other values of n . In this paper, by employing the Coulson integral formula and some knowledge of real analysis, especially by using certain combinatorial techniques, we completely solve this conjecture. However, it turns out that for n = 4 the conjecture is not true, and P 4 3 should be the unicyclic graph with maximal energy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2011.02.011</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2011-07, Vol.32 (5), p.662-673
issn 0195-6698
1095-9971
language eng
recordid cdi_proquest_miscellaneous_875027802
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Combinatorial analysis
Eigenvalues
Graphs
Integrals
Joining
Mathematical models
Searching
title Complete solution to a conjecture on the maximal energy of unicyclic graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20solution%20to%20a%20conjecture%20on%20the%20maximal%20energy%20of%20unicyclic%20graphs&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Huo,%20Bofeng&rft.date=2011-07-01&rft.volume=32&rft.issue=5&rft.spage=662&rft.epage=673&rft.pages=662-673&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2011.02.011&rft_dat=%3Cproquest_cross%3E875027802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875027802&rft_id=info:pmid/&rft_els_id=S0195669811000400&rfr_iscdi=true