Vehicle Speed Estimation Using Acoustic Wave Patterns

We estimate a vehicle's speed, its wheelbase length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using the vehicle's speed, the Doppler sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-01, Vol.57 (1), p.30-47
Hauptverfasser: Cevher, V., Chellappa, R., McClellan, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 30
container_title IEEE transactions on signal processing
container_volume 57
creator Cevher, V.
Chellappa, R.
McClellan, J.H.
description We estimate a vehicle's speed, its wheelbase length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using the vehicle's speed, the Doppler shift factor, the sensor's distance to the vehicle's closest-point-of-approach, and three envelope shape (ES) components, which approximate the shape variations of the received signal's power envelope. We incorporate the parameters of the ES components along with estimates of the vehicle engine RPM, the number of cylinders, and the vehicle's initial bearing, loudness and speed to form a vehicle profile vector. This vector provides a fingerprint that can be used for vehicle identification and classification. We also provide possible reasons why some of the existing methods are unable to provide unbiased vehicle speed estimates using the same framework. The approach is illustrated using vehicle speed estimation and classification results obtained with field data.
doi_str_mv 10.1109/TSP.2008.2005750
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875027144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4625947</ieee_id><sourcerecordid>875027144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-9bd4ec131ced75dbf786163d37a065a38e30c55f5f6453cc7ebd364f1b1c935e3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3wcsiqKetk02y2RxLqR9QsNBWvYVsdla3bHdrshX8701p6cGDl0yY-c3w3iPkksKAUlD389l0kABk20dIAUekRxWnMXCZHoc_CBaLTL6fkjPvlwCUc5X2iHjFz8rWGM3WiEU09l21Ml3VNtHCV81HNLTtJvRs9Ga-MZqarkPX-HNyUpra48W-9sniYTwfPcWTl8fn0XASW56ILlZ5wdFSRi0WUhR5KbOUpqxg0kAqDMuQgRWiFGXKBbNWYl6wlJc0p1YxgaxP7nZ316792qDv9KryFuvaNBh06SwYTWSwEsjbf0nGleCMQgCv_4DLduOa4EIHcUFrRkWAYAdZ13rvsNRrF3JxP5qC3satQ9x6G7fexx1WbvZ3jbemLp1pbOUPewmFBKRUgbvacRUiHsY8TYTikv0C2omGfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861131815</pqid></control><display><type>article</type><title>Vehicle Speed Estimation Using Acoustic Wave Patterns</title><source>IEEE Electronic Library (IEL)</source><creator>Cevher, V. ; Chellappa, R. ; McClellan, J.H.</creator><creatorcontrib>Cevher, V. ; Chellappa, R. ; McClellan, J.H.</creatorcontrib><description>We estimate a vehicle's speed, its wheelbase length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using the vehicle's speed, the Doppler shift factor, the sensor's distance to the vehicle's closest-point-of-approach, and three envelope shape (ES) components, which approximate the shape variations of the received signal's power envelope. We incorporate the parameters of the ES components along with estimates of the vehicle engine RPM, the number of cylinders, and the vehicle's initial bearing, loudness and speed to form a vehicle profile vector. This vector provides a fingerprint that can be used for vehicle identification and classification. We also provide possible reasons why some of the existing methods are unable to provide unbiased vehicle speed estimates using the same framework. The approach is illustrated using vehicle speed estimation and classification results obtained with field data.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2005750</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic noise ; Acoustic sensors ; Acoustic signal analysis ; Acoustic waves ; Acoustics ; Applied sciences ; Classification ; Doppler shift ; Engine cylinders ; Envelopes ; Estimates ; estimation ; Exact sciences and technology ; Fingerprint recognition ; Information, signal and communications theory ; Mathematical analysis ; maximum-likelihood estimation ; Miscellaneous ; Noise shaping ; pattern classification ; Pattern recognition ; road vehicle identification ; Shape ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory ; Tires ; Vectors (mathematics) ; Vehicle driving ; Vehicles</subject><ispartof>IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.30-47</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-9bd4ec131ced75dbf786163d37a065a38e30c55f5f6453cc7ebd364f1b1c935e3</citedby><cites>FETCH-LOGICAL-c425t-9bd4ec131ced75dbf786163d37a065a38e30c55f5f6453cc7ebd364f1b1c935e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4625947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4625947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21020779$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cevher, V.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><title>Vehicle Speed Estimation Using Acoustic Wave Patterns</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We estimate a vehicle's speed, its wheelbase length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using the vehicle's speed, the Doppler shift factor, the sensor's distance to the vehicle's closest-point-of-approach, and three envelope shape (ES) components, which approximate the shape variations of the received signal's power envelope. We incorporate the parameters of the ES components along with estimates of the vehicle engine RPM, the number of cylinders, and the vehicle's initial bearing, loudness and speed to form a vehicle profile vector. This vector provides a fingerprint that can be used for vehicle identification and classification. We also provide possible reasons why some of the existing methods are unable to provide unbiased vehicle speed estimates using the same framework. The approach is illustrated using vehicle speed estimation and classification results obtained with field data.</description><subject>Acoustic noise</subject><subject>Acoustic sensors</subject><subject>Acoustic signal analysis</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Doppler shift</subject><subject>Engine cylinders</subject><subject>Envelopes</subject><subject>Estimates</subject><subject>estimation</subject><subject>Exact sciences and technology</subject><subject>Fingerprint recognition</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>maximum-likelihood estimation</subject><subject>Miscellaneous</subject><subject>Noise shaping</subject><subject>pattern classification</subject><subject>Pattern recognition</subject><subject>road vehicle identification</subject><subject>Shape</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Tires</subject><subject>Vectors (mathematics)</subject><subject>Vehicle driving</subject><subject>Vehicles</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3wcsiqKetk02y2RxLqR9QsNBWvYVsdla3bHdrshX8701p6cGDl0yY-c3w3iPkksKAUlD389l0kABk20dIAUekRxWnMXCZHoc_CBaLTL6fkjPvlwCUc5X2iHjFz8rWGM3WiEU09l21Ml3VNtHCV81HNLTtJvRs9Ga-MZqarkPX-HNyUpra48W-9sniYTwfPcWTl8fn0XASW56ILlZ5wdFSRi0WUhR5KbOUpqxg0kAqDMuQgRWiFGXKBbNWYl6wlJc0p1YxgaxP7nZ316792qDv9KryFuvaNBh06SwYTWSwEsjbf0nGleCMQgCv_4DLduOa4EIHcUFrRkWAYAdZ13rvsNRrF3JxP5qC3satQ9x6G7fexx1WbvZ3jbemLp1pbOUPewmFBKRUgbvacRUiHsY8TYTikv0C2omGfg</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Cevher, V.</creator><creator>Chellappa, R.</creator><creator>McClellan, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Vehicle Speed Estimation Using Acoustic Wave Patterns</title><author>Cevher, V. ; Chellappa, R. ; McClellan, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-9bd4ec131ced75dbf786163d37a065a38e30c55f5f6453cc7ebd364f1b1c935e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic noise</topic><topic>Acoustic sensors</topic><topic>Acoustic signal analysis</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Doppler shift</topic><topic>Engine cylinders</topic><topic>Envelopes</topic><topic>Estimates</topic><topic>estimation</topic><topic>Exact sciences and technology</topic><topic>Fingerprint recognition</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>maximum-likelihood estimation</topic><topic>Miscellaneous</topic><topic>Noise shaping</topic><topic>pattern classification</topic><topic>Pattern recognition</topic><topic>road vehicle identification</topic><topic>Shape</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Tires</topic><topic>Vectors (mathematics)</topic><topic>Vehicle driving</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cevher, V.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><creatorcontrib>McClellan, J.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cevher, V.</au><au>Chellappa, R.</au><au>McClellan, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Speed Estimation Using Acoustic Wave Patterns</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>30</spage><epage>47</epage><pages>30-47</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We estimate a vehicle's speed, its wheelbase length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using the vehicle's speed, the Doppler shift factor, the sensor's distance to the vehicle's closest-point-of-approach, and three envelope shape (ES) components, which approximate the shape variations of the received signal's power envelope. We incorporate the parameters of the ES components along with estimates of the vehicle engine RPM, the number of cylinders, and the vehicle's initial bearing, loudness and speed to form a vehicle profile vector. This vector provides a fingerprint that can be used for vehicle identification and classification. We also provide possible reasons why some of the existing methods are unable to provide unbiased vehicle speed estimates using the same framework. The approach is illustrated using vehicle speed estimation and classification results obtained with field data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2005750</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.30-47
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_875027144
source IEEE Electronic Library (IEL)
subjects Acoustic noise
Acoustic sensors
Acoustic signal analysis
Acoustic waves
Acoustics
Applied sciences
Classification
Doppler shift
Engine cylinders
Envelopes
Estimates
estimation
Exact sciences and technology
Fingerprint recognition
Information, signal and communications theory
Mathematical analysis
maximum-likelihood estimation
Miscellaneous
Noise shaping
pattern classification
Pattern recognition
road vehicle identification
Shape
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Tires
Vectors (mathematics)
Vehicle driving
Vehicles
title Vehicle Speed Estimation Using Acoustic Wave Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Speed%20Estimation%20Using%20Acoustic%20Wave%20Patterns&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Cevher,%20V.&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=30&rft.epage=47&rft.pages=30-47&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2005750&rft_dat=%3Cproquest_RIE%3E875027144%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861131815&rft_id=info:pmid/&rft_ieee_id=4625947&rfr_iscdi=true