Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory

In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Applied Superconductivity 2009-06, Vol.19 (3), p.1762-1765
Hauptverfasser: James, D.R., Sauers, I., Ellis, A.R., Tuncer, E., Gouge, M.J., Demko, J.A., Duckworth, R.C., Rey, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1765
container_issue 3
container_start_page 1762
container_title IEEE Transactions on Applied Superconductivity
container_volume 19
creator James, D.R.
Sauers, I.
Ellis, A.R.
Tuncer, E.
Gouge, M.J.
Demko, J.A.
Duckworth, R.C.
Rey, C.M.
description In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.
doi_str_mv 10.1109/TASC.2009.2019646
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875026949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5109617</ieee_id><sourcerecordid>36346982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-aa9d39ea64ba784a6c60d1b5185f63c8bec85b5af45060701496c035f02a376f3</originalsourceid><addsrcrecordid>eNp90UFrHCEUB_ChNNA06QcovdhC0tOkPh0dPYal6RaWlLLTXuWN0V3DZEzVheTb12WXHHroRQV_7_Ee_6Z5D_QKgOovw_V6ccUo1fUALTv5qjkFIVTLBIjX9U0FtIox_qZ5m_M9pdCpTpw2tz93OAUfLJYQZ7IMmy35HaeCG0cGl0uYNyR6st7GVMiQAj6R5bAmCxwnl0mYSdk6ssIxJiwxPZ83Jx6n7N4d77Pm183XYbFsVz--fV9cr1rbAZQWUd9x7VB2I_aqQ2klvYNRgBJecqtGZ5UYBfpOUEn7OqyWlnLhKUPeS8_Pmo-HvrGOaLINxdmtjfPsbDFa8h5ENZ8P5jHFP7u6i3kI2bppwtnFXTaqF5RJ3ekqL_8rueSd1IpV-OkfeB93aa6bGg2Mci2YqggOyKaYc3LePKbwgOnZADX7sMw-LLMPyxzDqjUXx8aYLU4-4WxDfilkoJUEuncfDi44516-RW0qoed_AVpFmmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912039528</pqid></control><display><type>article</type><title>Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory</title><source>IEEE Electronic Library (IEL)</source><creator>James, D.R. ; Sauers, I. ; Ellis, A.R. ; Tuncer, E. ; Gouge, M.J. ; Demko, J.A. ; Duckworth, R.C. ; Rey, C.M.</creator><creatorcontrib>James, D.R. ; Sauers, I. ; Ellis, A.R. ; Tuncer, E. ; Gouge, M.J. ; Demko, J.A. ; Duckworth, R.C. ; Rey, C.M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2019646</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Cable insulation ; CABLES ; Computer simulation ; DESIGN ; Dielectric breakdown ; Dielectric liquids ; DIELECTRIC MATERIALS ; Dielectrics and electrical insulation ; Direct current ; Electric cables ; Electric connection. Cables. Wiring ; Electric potential ; ELECTRIC POWER ; Electrical engineering. Electrical power engineering ; ELECTRICAL INSULATION ; Electrical power engineering ; Electromagnets ; Exact sciences and technology ; High temperature superconductors ; High voltages ; high-temperature superconductors partial discharges power cable insulation power cable testing power grids superconducting cables ; Insulation ; Insulation testing ; Laboratories ; LIGHTNING ; MATERIALS SCIENCE ; Mathematical models ; NITROGEN ; OHIO ; ORNL ; partial discharges ; Performance evaluation ; power cable testing ; Power networks and lines ; Power systems ; PRODUCTION ; Qualifications ; SHIELDS ; Substations ; superconducting cables ; TESTING ; Testing. Reliability. Quality control ; Various equipment and components ; Voltage</subject><ispartof>IEEE Transactions on Applied Superconductivity, 2009-06, Vol.19 (3), p.1762-1765</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-aa9d39ea64ba784a6c60d1b5185f63c8bec85b5af45060701496c035f02a376f3</citedby><cites>FETCH-LOGICAL-c411t-aa9d39ea64ba784a6c60d1b5185f63c8bec85b5af45060701496c035f02a376f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5109617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5109617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21986106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/963715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>James, D.R.</creatorcontrib><creatorcontrib>Sauers, I.</creatorcontrib><creatorcontrib>Ellis, A.R.</creatorcontrib><creatorcontrib>Tuncer, E.</creatorcontrib><creatorcontrib>Gouge, M.J.</creatorcontrib><creatorcontrib>Demko, J.A.</creatorcontrib><creatorcontrib>Duckworth, R.C.</creatorcontrib><creatorcontrib>Rey, C.M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory</title><title>IEEE Transactions on Applied Superconductivity</title><addtitle>TASC</addtitle><description>In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.</description><subject>Applied sciences</subject><subject>Cable insulation</subject><subject>CABLES</subject><subject>Computer simulation</subject><subject>DESIGN</subject><subject>Dielectric breakdown</subject><subject>Dielectric liquids</subject><subject>DIELECTRIC MATERIALS</subject><subject>Dielectrics and electrical insulation</subject><subject>Direct current</subject><subject>Electric cables</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electric potential</subject><subject>ELECTRIC POWER</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>ELECTRICAL INSULATION</subject><subject>Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>High temperature superconductors</subject><subject>High voltages</subject><subject>high-temperature superconductors partial discharges power cable insulation power cable testing power grids superconducting cables</subject><subject>Insulation</subject><subject>Insulation testing</subject><subject>Laboratories</subject><subject>LIGHTNING</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>NITROGEN</subject><subject>OHIO</subject><subject>ORNL</subject><subject>partial discharges</subject><subject>Performance evaluation</subject><subject>power cable testing</subject><subject>Power networks and lines</subject><subject>Power systems</subject><subject>PRODUCTION</subject><subject>Qualifications</subject><subject>SHIELDS</subject><subject>Substations</subject><subject>superconducting cables</subject><subject>TESTING</subject><subject>Testing. Reliability. Quality control</subject><subject>Various equipment and components</subject><subject>Voltage</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90UFrHCEUB_ChNNA06QcovdhC0tOkPh0dPYal6RaWlLLTXuWN0V3DZEzVheTb12WXHHroRQV_7_Ee_6Z5D_QKgOovw_V6ccUo1fUALTv5qjkFIVTLBIjX9U0FtIox_qZ5m_M9pdCpTpw2tz93OAUfLJYQZ7IMmy35HaeCG0cGl0uYNyR6st7GVMiQAj6R5bAmCxwnl0mYSdk6ssIxJiwxPZ83Jx6n7N4d77Pm183XYbFsVz--fV9cr1rbAZQWUd9x7VB2I_aqQ2klvYNRgBJecqtGZ5UYBfpOUEn7OqyWlnLhKUPeS8_Pmo-HvrGOaLINxdmtjfPsbDFa8h5ENZ8P5jHFP7u6i3kI2bppwtnFXTaqF5RJ3ekqL_8rueSd1IpV-OkfeB93aa6bGg2Mci2YqggOyKaYc3LePKbwgOnZADX7sMw-LLMPyxzDqjUXx8aYLU4-4WxDfilkoJUEuncfDi44516-RW0qoed_AVpFmmA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>James, D.R.</creator><creator>Sauers, I.</creator><creator>Ellis, A.R.</creator><creator>Tuncer, E.</creator><creator>Gouge, M.J.</creator><creator>Demko, J.A.</creator><creator>Duckworth, R.C.</creator><creator>Rey, C.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>20090601</creationdate><title>Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory</title><author>James, D.R. ; Sauers, I. ; Ellis, A.R. ; Tuncer, E. ; Gouge, M.J. ; Demko, J.A. ; Duckworth, R.C. ; Rey, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-aa9d39ea64ba784a6c60d1b5185f63c8bec85b5af45060701496c035f02a376f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cable insulation</topic><topic>CABLES</topic><topic>Computer simulation</topic><topic>DESIGN</topic><topic>Dielectric breakdown</topic><topic>Dielectric liquids</topic><topic>DIELECTRIC MATERIALS</topic><topic>Dielectrics and electrical insulation</topic><topic>Direct current</topic><topic>Electric cables</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electric potential</topic><topic>ELECTRIC POWER</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>ELECTRICAL INSULATION</topic><topic>Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>High temperature superconductors</topic><topic>High voltages</topic><topic>high-temperature superconductors partial discharges power cable insulation power cable testing power grids superconducting cables</topic><topic>Insulation</topic><topic>Insulation testing</topic><topic>Laboratories</topic><topic>LIGHTNING</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>NITROGEN</topic><topic>OHIO</topic><topic>ORNL</topic><topic>partial discharges</topic><topic>Performance evaluation</topic><topic>power cable testing</topic><topic>Power networks and lines</topic><topic>Power systems</topic><topic>PRODUCTION</topic><topic>Qualifications</topic><topic>SHIELDS</topic><topic>Substations</topic><topic>superconducting cables</topic><topic>TESTING</topic><topic>Testing. Reliability. Quality control</topic><topic>Various equipment and components</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, D.R.</creatorcontrib><creatorcontrib>Sauers, I.</creatorcontrib><creatorcontrib>Ellis, A.R.</creatorcontrib><creatorcontrib>Tuncer, E.</creatorcontrib><creatorcontrib>Gouge, M.J.</creatorcontrib><creatorcontrib>Demko, J.A.</creatorcontrib><creatorcontrib>Duckworth, R.C.</creatorcontrib><creatorcontrib>Rey, C.M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Applied Superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>James, D.R.</au><au>Sauers, I.</au><au>Ellis, A.R.</au><au>Tuncer, E.</au><au>Gouge, M.J.</au><au>Demko, J.A.</au><au>Duckworth, R.C.</au><au>Rey, C.M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory</atitle><jtitle>IEEE Transactions on Applied Superconductivity</jtitle><stitle>TASC</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>1762</spage><epage>1765</epage><pages>1762-1765</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2019646</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE Transactions on Applied Superconductivity, 2009-06, Vol.19 (3), p.1762-1765
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_875026949
source IEEE Electronic Library (IEL)
subjects Applied sciences
Cable insulation
CABLES
Computer simulation
DESIGN
Dielectric breakdown
Dielectric liquids
DIELECTRIC MATERIALS
Dielectrics and electrical insulation
Direct current
Electric cables
Electric connection. Cables. Wiring
Electric potential
ELECTRIC POWER
Electrical engineering. Electrical power engineering
ELECTRICAL INSULATION
Electrical power engineering
Electromagnets
Exact sciences and technology
High temperature superconductors
High voltages
high-temperature superconductors partial discharges power cable insulation power cable testing power grids superconducting cables
Insulation
Insulation testing
Laboratories
LIGHTNING
MATERIALS SCIENCE
Mathematical models
NITROGEN
OHIO
ORNL
partial discharges
Performance evaluation
power cable testing
Power networks and lines
Power systems
PRODUCTION
Qualifications
SHIELDS
Substations
superconducting cables
TESTING
Testing. Reliability. Quality control
Various equipment and components
Voltage
title Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualification%20High%20Voltage%20Testing%20of%20Short%20Triax%20HTS%20Cables%20in%20the%20Laboratory&rft.jtitle=IEEE%20Transactions%20on%20Applied%20Superconductivity&rft.au=James,%20D.R.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=1762&rft.epage=1765&rft.pages=1762-1765&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2019646&rft_dat=%3Cproquest_RIE%3E36346982%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912039528&rft_id=info:pmid/&rft_ieee_id=5109617&rfr_iscdi=true