Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion

In this paper, we analyze and model the impact of floating dummy fill on the signal capacitance considering various parameters including signal dimensions, dummy shape and dimensions. Intra-layer dummy has its greatest impact on coupling capacitance while inter-layer dummy has larger impact on the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2009-08, Vol.17 (8), p.1166-1170
Hauptverfasser: Youngmin Kim, Petranovic, D., Sylvester, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1170
container_issue 8
container_start_page 1166
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 17
creator Youngmin Kim
Petranovic, D.
Sylvester, D.
description In this paper, we analyze and model the impact of floating dummy fill on the signal capacitance considering various parameters including signal dimensions, dummy shape and dimensions. Intra-layer dummy has its greatest impact on coupling capacitance while inter-layer dummy has larger impact on the ground capacitance component. Based on this analysis, we propose simple capacitance models (Cc for intra-layer dummy and Cg for inter-layer dummy). To consider realistic cases with both signals and metal fill in adjacent layers, we apply a weighting function approach to the Cg model. We verify this model using benchmark circuits and find that total net capacitance with floating fill can be extracted within ~1% of field solver results on average with total extraction runtime reductions of up to 40%. When evaluating the incremental capacitance due to fill alone, average error of the models range from 2%-15% across benchmarks and fill-related runtime overhead is reduced by 60%-88%.
doi_str_mv 10.1109/TVLSI.2009.2020392
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875026165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075527</ieee_id><sourcerecordid>875026165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-eaa9bff71add1a8a5ec89bb1f5d1f3c593cb367badabd78d3545be2e45bd57b03</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhpeSQh2nfyC9iEKT06b6sKzV0Zg4Mdj0EDdXMSvNFgV55UrrQ_59tbHJoYfMYWZgnnlh5q2qa0bvGKP65-5587S-45TqkjgVmn-qJkxKVesSF6Wnc1E3nNEv1WXOL5Sy2UzTSbV78vtDQAK9IwtrjwkGJNvoMGTSxUSWcADrB-gtkmXss3eYfP-HrEKEYWy2OEAgKx8CWfcZ0-Bjf1V97iBk_Hqu0-r36n63fKw3vx7Wy8WmtqJRQ40Auu06xcA5Bg1ItI1uW9ZJxzphpRa2FXPVgoPWqcYJOZMtcizZSdVSMa1uT7qHFP8eMQ9m77PFEKDHeMymUZLyOZvLQt58SApJZyNcwO__gS_xmPpyhdGMC6obNkL8BNkUc07YmUPye0ivhlEz-mHe_DCjH-bsR1n6cVaGbCF0qfzU5_dNzhrB5Jv4txPnEfF9LKmSkivxD1eElE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912309812</pqid></control><display><type>article</type><title>Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion</title><source>IEEE Electronic Library (IEL)</source><creator>Youngmin Kim ; Petranovic, D. ; Sylvester, D.</creator><creatorcontrib>Youngmin Kim ; Petranovic, D. ; Sylvester, D.</creatorcontrib><description>In this paper, we analyze and model the impact of floating dummy fill on the signal capacitance considering various parameters including signal dimensions, dummy shape and dimensions. Intra-layer dummy has its greatest impact on coupling capacitance while inter-layer dummy has larger impact on the ground capacitance component. Based on this analysis, we propose simple capacitance models (Cc for intra-layer dummy and Cg for inter-layer dummy). To consider realistic cases with both signals and metal fill in adjacent layers, we apply a weighting function approach to the Cg model. We verify this model using benchmark circuits and find that total net capacitance with floating fill can be extracted within ~1% of field solver results on average with total extraction runtime reductions of up to 40%. When evaluating the incremental capacitance due to fill alone, average error of the models range from 2%-15% across benchmarks and fill-related runtime overhead is reduced by 60%-88%.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2009.2020392</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Benchmarking ; Capacitance ; Circuits ; Crosstalk ; Degradation ; Delay ; design ; Design. Technologies. Operation analysis. Testing ; Dummies ; Electronics ; Exact sciences and technology ; Grounds ; Integrated circuit interconnections ; Integrated circuits ; integrated circuits (ICs) ; inter connects ; Parasitic capacitance ; Runtime ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Shape ; Signal analysis ; Silicon ; Solvers ; Very large scale integration ; Weighting functions</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2009-08, Vol.17 (8), p.1166-1170</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-eaa9bff71add1a8a5ec89bb1f5d1f3c593cb367badabd78d3545be2e45bd57b03</citedby><cites>FETCH-LOGICAL-c387t-eaa9bff71add1a8a5ec89bb1f5d1f3c593cb367badabd78d3545be2e45bd57b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21831512$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Youngmin Kim</creatorcontrib><creatorcontrib>Petranovic, D.</creatorcontrib><creatorcontrib>Sylvester, D.</creatorcontrib><title>Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we analyze and model the impact of floating dummy fill on the signal capacitance considering various parameters including signal dimensions, dummy shape and dimensions. Intra-layer dummy has its greatest impact on coupling capacitance while inter-layer dummy has larger impact on the ground capacitance component. Based on this analysis, we propose simple capacitance models (Cc for intra-layer dummy and Cg for inter-layer dummy). To consider realistic cases with both signals and metal fill in adjacent layers, we apply a weighting function approach to the Cg model. We verify this model using benchmark circuits and find that total net capacitance with floating fill can be extracted within ~1% of field solver results on average with total extraction runtime reductions of up to 40%. When evaluating the incremental capacitance due to fill alone, average error of the models range from 2%-15% across benchmarks and fill-related runtime overhead is reduced by 60%-88%.</description><subject>Applied sciences</subject><subject>Benchmarking</subject><subject>Capacitance</subject><subject>Circuits</subject><subject>Crosstalk</subject><subject>Degradation</subject><subject>Delay</subject><subject>design</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dummies</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Grounds</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>integrated circuits (ICs)</subject><subject>inter connects</subject><subject>Parasitic capacitance</subject><subject>Runtime</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Shape</subject><subject>Signal analysis</subject><subject>Silicon</subject><subject>Solvers</subject><subject>Very large scale integration</subject><subject>Weighting functions</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rGzEQhpeSQh2nfyC9iEKT06b6sKzV0Zg4Mdj0EDdXMSvNFgV55UrrQ_59tbHJoYfMYWZgnnlh5q2qa0bvGKP65-5587S-45TqkjgVmn-qJkxKVesSF6Wnc1E3nNEv1WXOL5Sy2UzTSbV78vtDQAK9IwtrjwkGJNvoMGTSxUSWcADrB-gtkmXss3eYfP-HrEKEYWy2OEAgKx8CWfcZ0-Bjf1V97iBk_Hqu0-r36n63fKw3vx7Wy8WmtqJRQ40Auu06xcA5Bg1ItI1uW9ZJxzphpRa2FXPVgoPWqcYJOZMtcizZSdVSMa1uT7qHFP8eMQ9m77PFEKDHeMymUZLyOZvLQt58SApJZyNcwO__gS_xmPpyhdGMC6obNkL8BNkUc07YmUPye0ivhlEz-mHe_DCjH-bsR1n6cVaGbCF0qfzU5_dNzhrB5Jv4txPnEfF9LKmSkivxD1eElE0</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Youngmin Kim</creator><creator>Petranovic, D.</creator><creator>Sylvester, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090801</creationdate><title>Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion</title><author>Youngmin Kim ; Petranovic, D. ; Sylvester, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-eaa9bff71add1a8a5ec89bb1f5d1f3c593cb367badabd78d3545be2e45bd57b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Benchmarking</topic><topic>Capacitance</topic><topic>Circuits</topic><topic>Crosstalk</topic><topic>Degradation</topic><topic>Delay</topic><topic>design</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dummies</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Grounds</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>integrated circuits (ICs)</topic><topic>inter connects</topic><topic>Parasitic capacitance</topic><topic>Runtime</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Shape</topic><topic>Signal analysis</topic><topic>Silicon</topic><topic>Solvers</topic><topic>Very large scale integration</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youngmin Kim</creatorcontrib><creatorcontrib>Petranovic, D.</creatorcontrib><creatorcontrib>Sylvester, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youngmin Kim</au><au>Petranovic, D.</au><au>Sylvester, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>17</volume><issue>8</issue><spage>1166</spage><epage>1170</epage><pages>1166-1170</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we analyze and model the impact of floating dummy fill on the signal capacitance considering various parameters including signal dimensions, dummy shape and dimensions. Intra-layer dummy has its greatest impact on coupling capacitance while inter-layer dummy has larger impact on the ground capacitance component. Based on this analysis, we propose simple capacitance models (Cc for intra-layer dummy and Cg for inter-layer dummy). To consider realistic cases with both signals and metal fill in adjacent layers, we apply a weighting function approach to the Cg model. We verify this model using benchmark circuits and find that total net capacitance with floating fill can be extracted within ~1% of field solver results on average with total extraction runtime reductions of up to 40%. When evaluating the incremental capacitance due to fill alone, average error of the models range from 2%-15% across benchmarks and fill-related runtime overhead is reduced by 60%-88%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2009.2020392</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2009-08, Vol.17 (8), p.1166-1170
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_miscellaneous_875026165
source IEEE Electronic Library (IEL)
subjects Applied sciences
Benchmarking
Capacitance
Circuits
Crosstalk
Degradation
Delay
design
Design. Technologies. Operation analysis. Testing
Dummies
Electronics
Exact sciences and technology
Grounds
Integrated circuit interconnections
Integrated circuits
integrated circuits (ICs)
inter connects
Parasitic capacitance
Runtime
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Shape
Signal analysis
Silicon
Solvers
Very large scale integration
Weighting functions
title Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20Accurate%20Models%20for%20Capacitance%20Considering%20Floating%20Metal%20Fill%20Insertion&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Youngmin%20Kim&rft.date=2009-08-01&rft.volume=17&rft.issue=8&rft.spage=1166&rft.epage=1170&rft.pages=1166-1170&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2009.2020392&rft_dat=%3Cproquest_RIE%3E875026165%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912309812&rft_id=info:pmid/&rft_ieee_id=5075527&rfr_iscdi=true