Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow fi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components and packaging technologies 2009-06, Vol.32 (2), p.243-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 243 |
container_title | IEEE transactions on components and packaging technologies |
container_volume | 32 |
creator | Khan, W.A. Culham, J.R. Yovanovich, M.M. |
description | In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed by considering an appropriate control volume and applying mass, energy, and entropy balances. The effect of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers, and accommodation coefficients on the entropy generation rate is investigated in the slip flow region. Analytical/empirical correlations are used for heat transfer and friction coefficients, where the characteristic length is used as the hydraulic diameter of the channel. A parametric study is also performed to show the effects of different design variables on the overall performance of microchannel heat sinks. |
doi_str_mv | 10.1109/TCAPT.2009.2022586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875024935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5170253</ieee_id><sourcerecordid>875024935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-574fd1bd6ef1fb7ef4784fe7a9744f1247c27460d0a531308585559cfea128aa3</originalsourceid><addsrcrecordid>eNp9kU9PwkAQxRujiYh-Ab00HvRU3L_d9mgIggkEE8t5s7Szsgi7tVsO-OldLNHEg5eZOfzem8y8KLrGaIAxyh-K4eNLMSAI5aEQwrP0JOphzkWS54KcHmaCE0opPo8uvF8jhFnG8l5UzOvWbM2nao2zsdPxzJSNK1fKWtjEE1Bt_Grsu48X3ti3eGTbxtX7eAwWmk4zM_bXYAbtylWX0ZlWGw9Xx96PFk-jYjhJpvPx8_BxmpSUizbhgukKL6sUNNZLAZqJjGkQKheMaUyYKIlgKaqQ4hRTlPGMc56XGhQmmVK0H913vnXjPnbgW7k1voTNRllwOy8zwRFhOeWBvPuXpGmAwsIA3v4B127X2HCFDOsZSlGaBYh0UHiV9w1oWTdmq5q9xEge8pDfechDHvKYRxDddCIDAD8CjgUinNIvQd2Gag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858406068</pqid></control><display><type>article</type><title>Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, W.A. ; Culham, J.R. ; Yovanovich, M.M.</creator><creatorcontrib>Khan, W.A. ; Culham, J.R. ; Yovanovich, M.M.</creatorcontrib><description>In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed by considering an appropriate control volume and applying mass, energy, and entropy balances. The effect of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers, and accommodation coefficients on the entropy generation rate is investigated in the slip flow region. Analytical/empirical correlations are used for heat transfer and friction coefficients, where the characteristic length is used as the hydraulic diameter of the channel. A parametric study is also performed to show the effects of different design variables on the overall performance of microchannel heat sinks.</description><identifier>ISSN: 1521-3331</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2009.2022586</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accommodation coefficient ; Analytical model ; Channels ; Entropy ; entropy generation minimization ; Genetic expression ; Heat sinks ; Heat transfer ; Microchannel ; microchannel heat sinks ; Microchannels ; Minimization ; Minimization methods ; Optimization ; Optimization methods ; Resistance heating ; Thermal resistance ; Weight control</subject><ispartof>IEEE transactions on components and packaging technologies, 2009-06, Vol.32 (2), p.243-251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-574fd1bd6ef1fb7ef4784fe7a9744f1247c27460d0a531308585559cfea128aa3</citedby><cites>FETCH-LOGICAL-c357t-574fd1bd6ef1fb7ef4784fe7a9744f1247c27460d0a531308585559cfea128aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5170253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5170253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, W.A.</creatorcontrib><creatorcontrib>Culham, J.R.</creatorcontrib><creatorcontrib>Yovanovich, M.M.</creatorcontrib><title>Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed by considering an appropriate control volume and applying mass, energy, and entropy balances. The effect of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers, and accommodation coefficients on the entropy generation rate is investigated in the slip flow region. Analytical/empirical correlations are used for heat transfer and friction coefficients, where the characteristic length is used as the hydraulic diameter of the channel. A parametric study is also performed to show the effects of different design variables on the overall performance of microchannel heat sinks.</description><subject>Accommodation coefficient</subject><subject>Analytical model</subject><subject>Channels</subject><subject>Entropy</subject><subject>entropy generation minimization</subject><subject>Genetic expression</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Microchannel</subject><subject>microchannel heat sinks</subject><subject>Microchannels</subject><subject>Minimization</subject><subject>Minimization methods</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Resistance heating</subject><subject>Thermal resistance</subject><subject>Weight control</subject><issn>1521-3331</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU9PwkAQxRujiYh-Ab00HvRU3L_d9mgIggkEE8t5s7Szsgi7tVsO-OldLNHEg5eZOfzem8y8KLrGaIAxyh-K4eNLMSAI5aEQwrP0JOphzkWS54KcHmaCE0opPo8uvF8jhFnG8l5UzOvWbM2nao2zsdPxzJSNK1fKWtjEE1Bt_Grsu48X3ti3eGTbxtX7eAwWmk4zM_bXYAbtylWX0ZlWGw9Xx96PFk-jYjhJpvPx8_BxmpSUizbhgukKL6sUNNZLAZqJjGkQKheMaUyYKIlgKaqQ4hRTlPGMc56XGhQmmVK0H913vnXjPnbgW7k1voTNRllwOy8zwRFhOeWBvPuXpGmAwsIA3v4B127X2HCFDOsZSlGaBYh0UHiV9w1oWTdmq5q9xEge8pDfechDHvKYRxDddCIDAD8CjgUinNIvQd2Gag</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Khan, W.A.</creator><creator>Culham, J.R.</creator><creator>Yovanovich, M.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method</title><author>Khan, W.A. ; Culham, J.R. ; Yovanovich, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-574fd1bd6ef1fb7ef4784fe7a9744f1247c27460d0a531308585559cfea128aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accommodation coefficient</topic><topic>Analytical model</topic><topic>Channels</topic><topic>Entropy</topic><topic>entropy generation minimization</topic><topic>Genetic expression</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Microchannel</topic><topic>microchannel heat sinks</topic><topic>Microchannels</topic><topic>Minimization</topic><topic>Minimization methods</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Resistance heating</topic><topic>Thermal resistance</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, W.A.</creatorcontrib><creatorcontrib>Culham, J.R.</creatorcontrib><creatorcontrib>Yovanovich, M.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, W.A.</au><au>Culham, J.R.</au><au>Yovanovich, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>32</volume><issue>2</issue><spage>243</spage><epage>251</epage><pages>243-251</pages><issn>1521-3331</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>In this paper, an entropy generation minimization (EGM) procedure is employed to optimize the overall performance of microchannel heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed by considering an appropriate control volume and applying mass, energy, and entropy balances. The effect of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers, and accommodation coefficients on the entropy generation rate is investigated in the slip flow region. Analytical/empirical correlations are used for heat transfer and friction coefficients, where the characteristic length is used as the hydraulic diameter of the channel. A parametric study is also performed to show the effects of different design variables on the overall performance of microchannel heat sinks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAPT.2009.2022586</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3331 |
ispartof | IEEE transactions on components and packaging technologies, 2009-06, Vol.32 (2), p.243-251 |
issn | 1521-3331 1557-9972 |
language | eng |
recordid | cdi_proquest_miscellaneous_875024935 |
source | IEEE Electronic Library (IEL) |
subjects | Accommodation coefficient Analytical model Channels Entropy entropy generation minimization Genetic expression Heat sinks Heat transfer Microchannel microchannel heat sinks Microchannels Minimization Minimization methods Optimization Optimization methods Resistance heating Thermal resistance Weight control |
title | Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Microchannel%20Heat%20Sinks%20Using%20Entropy%20Generation%20Minimization%20Method&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Khan,%20W.A.&rft.date=2009-06-01&rft.volume=32&rft.issue=2&rft.spage=243&rft.epage=251&rft.pages=243-251&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2009.2022586&rft_dat=%3Cproquest_RIE%3E875024935%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858406068&rft_id=info:pmid/&rft_ieee_id=5170253&rfr_iscdi=true |