Gait Feature Subset Selection by Mutual Information
Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gai...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
container_volume | 39 |
creator | Baofeng Guo Nixon, M.S. |
description | Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods. |
doi_str_mv | 10.1109/TSMCA.2008.2007977 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875023746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4695949</ieee_id><sourcerecordid>875023746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF6CF0-pO_uZPZZia6HFQ-t52WwmkJImdTc59N-bWPHgZWYYnncYHkIegc4AqHnd77aL-YxRmo1FG62vyASkzFImmLoeZprxVAimb8ldjAdKQQgjJoSvXNUlS3RdHzDZ9XnELtlhjb6r2ibJz8m273pXJ-umbMPRjdt7clO6OuLDb5-Sz-XbfvGebj5W68V8k3quaZdi6YzJpJTgHSpaAAePOcuU8kJjKUtNETSlueGyYKiEyFnhAVAAFKiQT8nL5e4ptF89xs4eq-ixrl2DbR9tpiVlXAs1kM__yEPbh2Z4zmZSC84FyAFiF8iHNsaApT2F6ujC2QK1o0X7Y9GOFu2vxSH0dAlViPgXEMpIIwz_Bg8JbJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857433415</pqid></control><display><type>article</type><title>Gait Feature Subset Selection by Mutual Information</title><source>IEEE Electronic Library (IEL)</source><creator>Baofeng Guo ; Nixon, M.S.</creator><creatorcontrib>Baofeng Guo ; Nixon, M.S.</creatorcontrib><description>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2008.2007977</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Biometrics ; Computational efficiency ; Data mining ; Feature extraction ; feature selection ; Gait ; gait recognition ; Human ; Humans ; Kinematics ; Length measurement ; Mathematical models ; Mutual information ; mutual information (MI) ; Operations research ; Pattern recognition ; Pixels ; Preprocessing ; Rotation measurement ; Studies ; Symmetry ; Time measurement</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</citedby><cites>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4695949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4695949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baofeng Guo</creatorcontrib><creatorcontrib>Nixon, M.S.</creatorcontrib><title>Gait Feature Subset Selection by Mutual Information</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</description><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Computational efficiency</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Gait</subject><subject>gait recognition</subject><subject>Human</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Length measurement</subject><subject>Mathematical models</subject><subject>Mutual information</subject><subject>mutual information (MI)</subject><subject>Operations research</subject><subject>Pattern recognition</subject><subject>Pixels</subject><subject>Preprocessing</subject><subject>Rotation measurement</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Time measurement</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_gF6CF0-pO_uZPZZia6HFQ-t52WwmkJImdTc59N-bWPHgZWYYnncYHkIegc4AqHnd77aL-YxRmo1FG62vyASkzFImmLoeZprxVAimb8ldjAdKQQgjJoSvXNUlS3RdHzDZ9XnELtlhjb6r2ibJz8m273pXJ-umbMPRjdt7clO6OuLDb5-Sz-XbfvGebj5W68V8k3quaZdi6YzJpJTgHSpaAAePOcuU8kJjKUtNETSlueGyYKiEyFnhAVAAFKiQT8nL5e4ptF89xs4eq-ixrl2DbR9tpiVlXAs1kM__yEPbh2Z4zmZSC84FyAFiF8iHNsaApT2F6ujC2QK1o0X7Y9GOFu2vxSH0dAlViPgXEMpIIwz_Bg8JbJ4</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Baofeng Guo</creator><creator>Nixon, M.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>200901</creationdate><title>Gait Feature Subset Selection by Mutual Information</title><author>Baofeng Guo ; Nixon, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Computational efficiency</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Gait</topic><topic>gait recognition</topic><topic>Human</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Length measurement</topic><topic>Mathematical models</topic><topic>Mutual information</topic><topic>mutual information (MI)</topic><topic>Operations research</topic><topic>Pattern recognition</topic><topic>Pixels</topic><topic>Preprocessing</topic><topic>Rotation measurement</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baofeng Guo</creatorcontrib><creatorcontrib>Nixon, M.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baofeng Guo</au><au>Nixon, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait Feature Subset Selection by Mutual Information</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2009-01</date><risdate>2009</risdate><volume>39</volume><issue>1</issue><spage>36</spage><epage>46</epage><pages>36-46</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2008.2007977</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4427 |
ispartof | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46 |
issn | 1083-4427 2168-2216 1558-2426 2168-2232 |
language | eng |
recordid | cdi_proquest_miscellaneous_875023746 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Biometrics Computational efficiency Data mining Feature extraction feature selection Gait gait recognition Human Humans Kinematics Length measurement Mathematical models Mutual information mutual information (MI) Operations research Pattern recognition Pixels Preprocessing Rotation measurement Studies Symmetry Time measurement |
title | Gait Feature Subset Selection by Mutual Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20Feature%20Subset%20Selection%20by%20Mutual%20Information&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Baofeng%20Guo&rft.date=2009-01&rft.volume=39&rft.issue=1&rft.spage=36&rft.epage=46&rft.pages=36-46&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2008.2007977&rft_dat=%3Cproquest_RIE%3E875023746%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857433415&rft_id=info:pmid/&rft_ieee_id=4695949&rfr_iscdi=true |