Gait Feature Subset Selection by Mutual Information

Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46
Hauptverfasser: Baofeng Guo, Nixon, M.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 36
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 39
creator Baofeng Guo
Nixon, M.S.
description Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.
doi_str_mv 10.1109/TSMCA.2008.2007977
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875023746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4695949</ieee_id><sourcerecordid>875023746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF6CF0-pO_uZPZZia6HFQ-t52WwmkJImdTc59N-bWPHgZWYYnncYHkIegc4AqHnd77aL-YxRmo1FG62vyASkzFImmLoeZprxVAimb8ldjAdKQQgjJoSvXNUlS3RdHzDZ9XnELtlhjb6r2ibJz8m273pXJ-umbMPRjdt7clO6OuLDb5-Sz-XbfvGebj5W68V8k3quaZdi6YzJpJTgHSpaAAePOcuU8kJjKUtNETSlueGyYKiEyFnhAVAAFKiQT8nL5e4ptF89xs4eq-ixrl2DbR9tpiVlXAs1kM__yEPbh2Z4zmZSC84FyAFiF8iHNsaApT2F6ujC2QK1o0X7Y9GOFu2vxSH0dAlViPgXEMpIIwz_Bg8JbJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857433415</pqid></control><display><type>article</type><title>Gait Feature Subset Selection by Mutual Information</title><source>IEEE Electronic Library (IEL)</source><creator>Baofeng Guo ; Nixon, M.S.</creator><creatorcontrib>Baofeng Guo ; Nixon, M.S.</creatorcontrib><description>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2008.2007977</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Biometrics ; Computational efficiency ; Data mining ; Feature extraction ; feature selection ; Gait ; gait recognition ; Human ; Humans ; Kinematics ; Length measurement ; Mathematical models ; Mutual information ; mutual information (MI) ; Operations research ; Pattern recognition ; Pixels ; Preprocessing ; Rotation measurement ; Studies ; Symmetry ; Time measurement</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</citedby><cites>FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4695949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4695949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baofeng Guo</creatorcontrib><creatorcontrib>Nixon, M.S.</creatorcontrib><title>Gait Feature Subset Selection by Mutual Information</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</description><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Computational efficiency</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Gait</subject><subject>gait recognition</subject><subject>Human</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Length measurement</subject><subject>Mathematical models</subject><subject>Mutual information</subject><subject>mutual information (MI)</subject><subject>Operations research</subject><subject>Pattern recognition</subject><subject>Pixels</subject><subject>Preprocessing</subject><subject>Rotation measurement</subject><subject>Studies</subject><subject>Symmetry</subject><subject>Time measurement</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_gF6CF0-pO_uZPZZia6HFQ-t52WwmkJImdTc59N-bWPHgZWYYnncYHkIegc4AqHnd77aL-YxRmo1FG62vyASkzFImmLoeZprxVAimb8ldjAdKQQgjJoSvXNUlS3RdHzDZ9XnELtlhjb6r2ibJz8m273pXJ-umbMPRjdt7clO6OuLDb5-Sz-XbfvGebj5W68V8k3quaZdi6YzJpJTgHSpaAAePOcuU8kJjKUtNETSlueGyYKiEyFnhAVAAFKiQT8nL5e4ptF89xs4eq-ixrl2DbR9tpiVlXAs1kM__yEPbh2Z4zmZSC84FyAFiF8iHNsaApT2F6ujC2QK1o0X7Y9GOFu2vxSH0dAlViPgXEMpIIwz_Bg8JbJ4</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Baofeng Guo</creator><creator>Nixon, M.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>200901</creationdate><title>Gait Feature Subset Selection by Mutual Information</title><author>Baofeng Guo ; Nixon, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-efa9985551cae60d131ceb2866c47ef5f70e1700b935d2e644b2dc11e411de6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Computational efficiency</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Gait</topic><topic>gait recognition</topic><topic>Human</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Length measurement</topic><topic>Mathematical models</topic><topic>Mutual information</topic><topic>mutual information (MI)</topic><topic>Operations research</topic><topic>Pattern recognition</topic><topic>Pixels</topic><topic>Preprocessing</topic><topic>Rotation measurement</topic><topic>Studies</topic><topic>Symmetry</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baofeng Guo</creatorcontrib><creatorcontrib>Nixon, M.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baofeng Guo</au><au>Nixon, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait Feature Subset Selection by Mutual Information</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2009-01</date><risdate>2009</risdate><volume>39</volume><issue>1</issue><spage>36</spage><epage>46</epage><pages>36-46</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Feature subset selection is an important preprocessing step for pattern recognition, to discard irrelevant and redundant information, as well as to identify the most important attributes. In this paper, we investigate a computationally efficient solution to select the most important features for gait recognition. The specific technique applied is based on mutual information (MI), which evaluates the statistical dependence between two random variables and has an established relation with the Bayes classification error. Extending our earlier research, we show that a sequential selection method based on MI can provide an effective solution for high-dimensional human gait data. To assess the performance of the approach, experiments are carried out based on a 73-dimensional model-based gait features set and on a 64 by 64 pixels model-free gait symmetry map on the Southampton HiD Gait database. The experimental results confirm the effectiveness of the method, removing about 50% of the model-based features and 95% of the symmetry map's pixels without significant loss in recognition capability, which outperforms correlation and analysis-of-variance-based methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2008.2007977</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-01, Vol.39 (1), p.36-46
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_proquest_miscellaneous_875023746
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biometrics
Computational efficiency
Data mining
Feature extraction
feature selection
Gait
gait recognition
Human
Humans
Kinematics
Length measurement
Mathematical models
Mutual information
mutual information (MI)
Operations research
Pattern recognition
Pixels
Preprocessing
Rotation measurement
Studies
Symmetry
Time measurement
title Gait Feature Subset Selection by Mutual Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20Feature%20Subset%20Selection%20by%20Mutual%20Information&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Baofeng%20Guo&rft.date=2009-01&rft.volume=39&rft.issue=1&rft.spage=36&rft.epage=46&rft.pages=36-46&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2008.2007977&rft_dat=%3Cproquest_RIE%3E875023746%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857433415&rft_id=info:pmid/&rft_ieee_id=4695949&rfr_iscdi=true