Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations
This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-cal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
container_volume | 40 |
creator | Ching-Hua Ting Mahfouf, M. Nassef, A. Linkens, D.A. Panoutsos, G. Nickel, P. Roberts, A.C. Hockey, G. |
description | This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance. |
doi_str_mv | 10.1109/TSMCA.2009.2035301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875018907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5345873</ieee_id><sourcerecordid>875018907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhoWiAZom-QPtQnTpJJefIjW6RtIESOAgdmeBHyeAgSS6JBXAY_556NrI0KUL-d7d895wb1V9IXhBCG5_bDcPq-WCYtyWhwmGyYfqnAihaspp87ForFjNOZWfqs8pPWNMOG_5efX6BHqot34EtHR6l_1LEXMOo84-TGizTxlG9FMncKjUdw6m7Htvj-PQo_UOos4hopt5soemHtAm6wzIF7sf56Fohx5jsJASWoUpxzCcbAVPl9VZr4cEV6f_ovp9c71d3db36193q-V9bZlQuZaiMZwYI4BoJ01re6tYA04qQp2VXBpdBlhhyp0hwIxthNakbXptjAXHLqrvx727GP7MkHI3-mRhGPQEYU6dkgIT1WL5X1JyJpkQhBTy2z_kc5hjOUFZJySjmCpRIHqEbAwpRei7XfSjjvuO4O6QXvc3ve6QXndKr5i-Hk0eAN4NgnGhJGNvuCeYeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857320285</pqid></control><display><type>article</type><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</creator><creatorcontrib>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</creatorcontrib><description>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2009.2035301</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive Automation (AA) ; Adaptive control ; Adaptive systems ; Automation ; Computerized monitoring ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Human ; Humans ; Indicators ; man-machine systems ; Mathematical models ; neural-fuzzy modeling and control ; operator functional state (OFS) ; Operators ; Process control ; Process controls ; Programmable control ; Psychology ; psychophysiology ; Real time systems ; signal processing ; Studies</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</citedby><cites>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5345873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5345873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ching-Hua Ting</creatorcontrib><creatorcontrib>Mahfouf, M.</creatorcontrib><creatorcontrib>Nassef, A.</creatorcontrib><creatorcontrib>Linkens, D.A.</creatorcontrib><creatorcontrib>Panoutsos, G.</creatorcontrib><creatorcontrib>Nickel, P.</creatorcontrib><creatorcontrib>Roberts, A.C.</creatorcontrib><creatorcontrib>Hockey, G.</creatorcontrib><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</description><subject>Adaptive Automation (AA)</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Automation</subject><subject>Computerized monitoring</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Human</subject><subject>Humans</subject><subject>Indicators</subject><subject>man-machine systems</subject><subject>Mathematical models</subject><subject>neural-fuzzy modeling and control</subject><subject>operator functional state (OFS)</subject><subject>Operators</subject><subject>Process control</subject><subject>Process controls</subject><subject>Programmable control</subject><subject>Psychology</subject><subject>psychophysiology</subject><subject>Real time systems</subject><subject>signal processing</subject><subject>Studies</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1v2zAQhoWiAZom-QPtQnTpJJefIjW6RtIESOAgdmeBHyeAgSS6JBXAY_556NrI0KUL-d7d895wb1V9IXhBCG5_bDcPq-WCYtyWhwmGyYfqnAihaspp87ForFjNOZWfqs8pPWNMOG_5efX6BHqot34EtHR6l_1LEXMOo84-TGizTxlG9FMncKjUdw6m7Htvj-PQo_UOos4hopt5soemHtAm6wzIF7sf56Fohx5jsJASWoUpxzCcbAVPl9VZr4cEV6f_ovp9c71d3db36193q-V9bZlQuZaiMZwYI4BoJ01re6tYA04qQp2VXBpdBlhhyp0hwIxthNakbXptjAXHLqrvx727GP7MkHI3-mRhGPQEYU6dkgIT1WL5X1JyJpkQhBTy2z_kc5hjOUFZJySjmCpRIHqEbAwpRei7XfSjjvuO4O6QXvc3ve6QXndKr5i-Hk0eAN4NgnGhJGNvuCeYeg</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Ching-Hua Ting</creator><creator>Mahfouf, M.</creator><creator>Nassef, A.</creator><creator>Linkens, D.A.</creator><creator>Panoutsos, G.</creator><creator>Nickel, P.</creator><creator>Roberts, A.C.</creator><creator>Hockey, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201003</creationdate><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><author>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Automation (AA)</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Automation</topic><topic>Computerized monitoring</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Human</topic><topic>Humans</topic><topic>Indicators</topic><topic>man-machine systems</topic><topic>Mathematical models</topic><topic>neural-fuzzy modeling and control</topic><topic>operator functional state (OFS)</topic><topic>Operators</topic><topic>Process control</topic><topic>Process controls</topic><topic>Programmable control</topic><topic>Psychology</topic><topic>psychophysiology</topic><topic>Real time systems</topic><topic>signal processing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ching-Hua Ting</creatorcontrib><creatorcontrib>Mahfouf, M.</creatorcontrib><creatorcontrib>Nassef, A.</creatorcontrib><creatorcontrib>Linkens, D.A.</creatorcontrib><creatorcontrib>Panoutsos, G.</creatorcontrib><creatorcontrib>Nickel, P.</creatorcontrib><creatorcontrib>Roberts, A.C.</creatorcontrib><creatorcontrib>Hockey, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ching-Hua Ting</au><au>Mahfouf, M.</au><au>Nassef, A.</au><au>Linkens, D.A.</au><au>Panoutsos, G.</au><au>Nickel, P.</au><au>Roberts, A.C.</au><au>Hockey, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2010-03</date><risdate>2010</risdate><volume>40</volume><issue>2</issue><spage>251</spage><epage>262</epage><pages>251-262</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2009.2035301</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4427 |
ispartof | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262 |
issn | 1083-4427 2168-2216 1558-2426 2168-2232 |
language | eng |
recordid | cdi_proquest_miscellaneous_875018907 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive Automation (AA) Adaptive control Adaptive systems Automation Computerized monitoring Fuzzy Fuzzy logic Fuzzy set theory Fuzzy systems Human Humans Indicators man-machine systems Mathematical models neural-fuzzy modeling and control operator functional state (OFS) Operators Process control Process controls Programmable control Psychology psychophysiology Real time systems signal processing Studies |
title | Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Adaptive%20Automation%20System%20Based%20on%20Identification%20of%20Operator%20Functional%20State%20in%20Simulated%20Process%20Control%20Operations&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Ching-Hua%20Ting&rft.date=2010-03&rft.volume=40&rft.issue=2&rft.spage=251&rft.epage=262&rft.pages=251-262&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2009.2035301&rft_dat=%3Cproquest_RIE%3E875018907%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857320285&rft_id=info:pmid/&rft_ieee_id=5345873&rfr_iscdi=true |