Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations

This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262
Hauptverfasser: Ching-Hua Ting, Mahfouf, M., Nassef, A., Linkens, D.A., Panoutsos, G., Nickel, P., Roberts, A.C., Hockey, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 251
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 40
creator Ching-Hua Ting
Mahfouf, M.
Nassef, A.
Linkens, D.A.
Panoutsos, G.
Nickel, P.
Roberts, A.C.
Hockey, G.
description This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.
doi_str_mv 10.1109/TSMCA.2009.2035301
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875018907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5345873</ieee_id><sourcerecordid>875018907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhoWiAZom-QPtQnTpJJefIjW6RtIESOAgdmeBHyeAgSS6JBXAY_556NrI0KUL-d7d895wb1V9IXhBCG5_bDcPq-WCYtyWhwmGyYfqnAihaspp87ForFjNOZWfqs8pPWNMOG_5efX6BHqot34EtHR6l_1LEXMOo84-TGizTxlG9FMncKjUdw6m7Htvj-PQo_UOos4hopt5soemHtAm6wzIF7sf56Fohx5jsJASWoUpxzCcbAVPl9VZr4cEV6f_ovp9c71d3db36193q-V9bZlQuZaiMZwYI4BoJ01re6tYA04qQp2VXBpdBlhhyp0hwIxthNakbXptjAXHLqrvx727GP7MkHI3-mRhGPQEYU6dkgIT1WL5X1JyJpkQhBTy2z_kc5hjOUFZJySjmCpRIHqEbAwpRei7XfSjjvuO4O6QXvc3ve6QXndKr5i-Hk0eAN4NgnGhJGNvuCeYeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857320285</pqid></control><display><type>article</type><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</creator><creatorcontrib>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</creatorcontrib><description>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2009.2035301</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive Automation (AA) ; Adaptive control ; Adaptive systems ; Automation ; Computerized monitoring ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Fuzzy systems ; Human ; Humans ; Indicators ; man-machine systems ; Mathematical models ; neural-fuzzy modeling and control ; operator functional state (OFS) ; Operators ; Process control ; Process controls ; Programmable control ; Psychology ; psychophysiology ; Real time systems ; signal processing ; Studies</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</citedby><cites>FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5345873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5345873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ching-Hua Ting</creatorcontrib><creatorcontrib>Mahfouf, M.</creatorcontrib><creatorcontrib>Nassef, A.</creatorcontrib><creatorcontrib>Linkens, D.A.</creatorcontrib><creatorcontrib>Panoutsos, G.</creatorcontrib><creatorcontrib>Nickel, P.</creatorcontrib><creatorcontrib>Roberts, A.C.</creatorcontrib><creatorcontrib>Hockey, G.</creatorcontrib><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</description><subject>Adaptive Automation (AA)</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Automation</subject><subject>Computerized monitoring</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Human</subject><subject>Humans</subject><subject>Indicators</subject><subject>man-machine systems</subject><subject>Mathematical models</subject><subject>neural-fuzzy modeling and control</subject><subject>operator functional state (OFS)</subject><subject>Operators</subject><subject>Process control</subject><subject>Process controls</subject><subject>Programmable control</subject><subject>Psychology</subject><subject>psychophysiology</subject><subject>Real time systems</subject><subject>signal processing</subject><subject>Studies</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1v2zAQhoWiAZom-QPtQnTpJJefIjW6RtIESOAgdmeBHyeAgSS6JBXAY_556NrI0KUL-d7d895wb1V9IXhBCG5_bDcPq-WCYtyWhwmGyYfqnAihaspp87ForFjNOZWfqs8pPWNMOG_5efX6BHqot34EtHR6l_1LEXMOo84-TGizTxlG9FMncKjUdw6m7Htvj-PQo_UOos4hopt5soemHtAm6wzIF7sf56Fohx5jsJASWoUpxzCcbAVPl9VZr4cEV6f_ovp9c71d3db36193q-V9bZlQuZaiMZwYI4BoJ01re6tYA04qQp2VXBpdBlhhyp0hwIxthNakbXptjAXHLqrvx727GP7MkHI3-mRhGPQEYU6dkgIT1WL5X1JyJpkQhBTy2z_kc5hjOUFZJySjmCpRIHqEbAwpRei7XfSjjvuO4O6QXvc3ve6QXndKr5i-Hk0eAN4NgnGhJGNvuCeYeg</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Ching-Hua Ting</creator><creator>Mahfouf, M.</creator><creator>Nassef, A.</creator><creator>Linkens, D.A.</creator><creator>Panoutsos, G.</creator><creator>Nickel, P.</creator><creator>Roberts, A.C.</creator><creator>Hockey, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201003</creationdate><title>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</title><author>Ching-Hua Ting ; Mahfouf, M. ; Nassef, A. ; Linkens, D.A. ; Panoutsos, G. ; Nickel, P. ; Roberts, A.C. ; Hockey, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-756b41bb5e1ad7b9cfc836ed7812dc747ba1ad08024db1e3bc65aa196fabbced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Automation (AA)</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Automation</topic><topic>Computerized monitoring</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Human</topic><topic>Humans</topic><topic>Indicators</topic><topic>man-machine systems</topic><topic>Mathematical models</topic><topic>neural-fuzzy modeling and control</topic><topic>operator functional state (OFS)</topic><topic>Operators</topic><topic>Process control</topic><topic>Process controls</topic><topic>Programmable control</topic><topic>Psychology</topic><topic>psychophysiology</topic><topic>Real time systems</topic><topic>signal processing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ching-Hua Ting</creatorcontrib><creatorcontrib>Mahfouf, M.</creatorcontrib><creatorcontrib>Nassef, A.</creatorcontrib><creatorcontrib>Linkens, D.A.</creatorcontrib><creatorcontrib>Panoutsos, G.</creatorcontrib><creatorcontrib>Nickel, P.</creatorcontrib><creatorcontrib>Roberts, A.C.</creatorcontrib><creatorcontrib>Hockey, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ching-Hua Ting</au><au>Mahfouf, M.</au><au>Nassef, A.</au><au>Linkens, D.A.</au><au>Panoutsos, G.</au><au>Nickel, P.</au><au>Roberts, A.C.</au><au>Hockey, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2010-03</date><risdate>2010</risdate><volume>40</volume><issue>2</issue><spage>251</spage><epage>262</epage><pages>251-262</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>This paper proposes a new framework for the online monitoring and adaptive control of automation in complex and safety-critical human-machine systems using psychophysiological markers relating to humans under mental stress. The starting point of this framework relates to the assessment of the so-called operator functional state using psychophysiological measures. An adaptive fuzzy model linking heart-rate variability and task load index with the subjects' optimal performance has been elicited and validated offline via a series of experiments involving process control tasks simulated on an automation-enhanced Cabin Air Management System. The elicited model has been used as the basis for an online control system via the predictions of the system performance indicators corresponding to the operator stressful state. These indicators have been used by a fuzzy decision maker to modify the level of automation under which the system may operate. A real-time architecture has been developed as a platform for this approach. It has been validated in a series of human volunteer studies with promising improvement in performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2009.2035301</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.251-262
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_proquest_miscellaneous_875018907
source IEEE Electronic Library (IEL)
subjects Adaptive Automation (AA)
Adaptive control
Adaptive systems
Automation
Computerized monitoring
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy systems
Human
Humans
Indicators
man-machine systems
Mathematical models
neural-fuzzy modeling and control
operator functional state (OFS)
Operators
Process control
Process controls
Programmable control
Psychology
psychophysiology
Real time systems
signal processing
Studies
title Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Adaptive%20Automation%20System%20Based%20on%20Identification%20of%20Operator%20Functional%20State%20in%20Simulated%20Process%20Control%20Operations&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Ching-Hua%20Ting&rft.date=2010-03&rft.volume=40&rft.issue=2&rft.spage=251&rft.epage=262&rft.pages=251-262&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2009.2035301&rft_dat=%3Cproquest_RIE%3E875018907%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857320285&rft_id=info:pmid/&rft_ieee_id=5345873&rfr_iscdi=true