Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology

In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2010-03, Vol.18 (3), p.378-391
Hauptverfasser: Nieuwoudt, A., Kawa, J., Massoud, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 3
container_start_page 378
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 18
creator Nieuwoudt, A.
Kawa, J.
Massoud, Y.
description In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.
doi_str_mv 10.1109/TVLSI.2008.2010830
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875016086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4814466</ieee_id><sourcerecordid>875016086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJUrhC8DFQkJcmtaOHds5ooW2kbZ_JBau1tSZgIvX3trZw_LpcbqrHrjgw3ik-c2T5r2qesfoGWO0O1_9WH7rzxpKdSmMak5fVMesbVXdlfey9FTyWjeMvqpe5_xAKROio8fVbpFizhP433Ufhq3FgXxBD7tTchNdxlMCYSB9mDDZGALaidx5CJDcH5hcDKRfb7yzT30mcSQXzntyjUWQuEBuIMRswSO5S9FizmSF9leIPv7cvamORvAZ3x7-k-r7xdfV4qpe3l72i8_L2nKtp1rfCz40ioFtxkGNnbTM3isN1EpmuRRDK7HloEBpOggAzVlDJTStAitb2_GT6tNed5Pi4xbzZNYuW_TlDIzbbLRqKZNUy_-SSnDZKq5nzQ__kA9xm0I5w3SMFce54gVq9pCdLU44mk1ya0g7w6iZUzNPqZk5NXNIrSx9PCjDbNyYIFiXnzebRgjNBCvc-z3nEPF5PM-ElPwvIkygrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911999373</pqid></control><display><type>article</type><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</creator><creatorcontrib>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</creatorcontrib><description>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2008.2010830</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Chemical mechanical polishing ; Chemical processes ; Chemical technology ; Crosstalk ; crosstalk-induced delay ; Delay ; Delay effects ; Design engineering ; design for manufacturability ; Design. Technologies. Operation analysis. Testing ; dummy fill ; Electronics ; Exact sciences and technology ; Integrated circuits ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Nanostructure ; Noise ; Noise generators ; Noise reduction ; Parasitic capacitance ; Planarization ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Very large scale integration ; Wire</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2010-03, Vol.18 (3), p.378-391</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</citedby><cites>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4814466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4814466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22448141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nieuwoudt, A.</creatorcontrib><creatorcontrib>Kawa, J.</creatorcontrib><creatorcontrib>Massoud, Y.</creatorcontrib><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</description><subject>Applied sciences</subject><subject>Chemical mechanical polishing</subject><subject>Chemical processes</subject><subject>Chemical technology</subject><subject>Crosstalk</subject><subject>crosstalk-induced delay</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Design engineering</subject><subject>design for manufacturability</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>dummy fill</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanostructure</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Noise reduction</subject><subject>Parasitic capacitance</subject><subject>Planarization</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Very large scale integration</subject><subject>Wire</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9v1DAQxSNEJUrhC8DFQkJcmtaOHds5ooW2kbZ_JBau1tSZgIvX3trZw_LpcbqrHrjgw3ik-c2T5r2qesfoGWO0O1_9WH7rzxpKdSmMak5fVMesbVXdlfey9FTyWjeMvqpe5_xAKROio8fVbpFizhP433Ufhq3FgXxBD7tTchNdxlMCYSB9mDDZGALaidx5CJDcH5hcDKRfb7yzT30mcSQXzntyjUWQuEBuIMRswSO5S9FizmSF9leIPv7cvamORvAZ3x7-k-r7xdfV4qpe3l72i8_L2nKtp1rfCz40ioFtxkGNnbTM3isN1EpmuRRDK7HloEBpOggAzVlDJTStAitb2_GT6tNed5Pi4xbzZNYuW_TlDIzbbLRqKZNUy_-SSnDZKq5nzQ__kA9xm0I5w3SMFce54gVq9pCdLU44mk1ya0g7w6iZUzNPqZk5NXNIrSx9PCjDbNyYIFiXnzebRgjNBCvc-z3nEPF5PM-ElPwvIkygrg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Nieuwoudt, A.</creator><creator>Kawa, J.</creator><creator>Massoud, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><author>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical mechanical polishing</topic><topic>Chemical processes</topic><topic>Chemical technology</topic><topic>Crosstalk</topic><topic>crosstalk-induced delay</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Design engineering</topic><topic>design for manufacturability</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>dummy fill</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanostructure</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Noise reduction</topic><topic>Parasitic capacitance</topic><topic>Planarization</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Very large scale integration</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieuwoudt, A.</creatorcontrib><creatorcontrib>Kawa, J.</creatorcontrib><creatorcontrib>Massoud, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nieuwoudt, A.</au><au>Kawa, J.</au><au>Massoud, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>18</volume><issue>3</issue><spage>378</spage><epage>391</epage><pages>378-391</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2008.2010830</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2010-03, Vol.18 (3), p.378-391
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_miscellaneous_875016086
source IEEE Electronic Library (IEL)
subjects Applied sciences
Chemical mechanical polishing
Chemical processes
Chemical technology
Crosstalk
crosstalk-induced delay
Delay
Delay effects
Design engineering
design for manufacturability
Design. Technologies. Operation analysis. Testing
dummy fill
Electronics
Exact sciences and technology
Integrated circuits
Mathematical models
Microelectronic fabrication (materials and surfaces technology)
Nanostructure
Noise
Noise generators
Noise reduction
Parasitic capacitance
Planarization
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Very large scale integration
Wire
title Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosstalk-Induced%20Delay,%20Noise,%20and%20Interconnect%20Planarization%20Implications%20of%20Fill%20Metal%20in%20Nanoscale%20Process%20Technology&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Nieuwoudt,%20A.&rft.date=2010-03-01&rft.volume=18&rft.issue=3&rft.spage=378&rft.epage=391&rft.pages=378-391&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2008.2010830&rft_dat=%3Cproquest_RIE%3E875016086%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911999373&rft_id=info:pmid/&rft_ieee_id=4814466&rfr_iscdi=true