Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology
In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2010-03, Vol.18 (3), p.378-391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 3 |
container_start_page | 378 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 18 |
creator | Nieuwoudt, A. Kawa, J. Massoud, Y. |
description | In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods. |
doi_str_mv | 10.1109/TVLSI.2008.2010830 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875016086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4814466</ieee_id><sourcerecordid>875016086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJUrhC8DFQkJcmtaOHds5ooW2kbZ_JBau1tSZgIvX3trZw_LpcbqrHrjgw3ik-c2T5r2qesfoGWO0O1_9WH7rzxpKdSmMak5fVMesbVXdlfey9FTyWjeMvqpe5_xAKROio8fVbpFizhP433Ufhq3FgXxBD7tTchNdxlMCYSB9mDDZGALaidx5CJDcH5hcDKRfb7yzT30mcSQXzntyjUWQuEBuIMRswSO5S9FizmSF9leIPv7cvamORvAZ3x7-k-r7xdfV4qpe3l72i8_L2nKtp1rfCz40ioFtxkGNnbTM3isN1EpmuRRDK7HloEBpOggAzVlDJTStAitb2_GT6tNed5Pi4xbzZNYuW_TlDIzbbLRqKZNUy_-SSnDZKq5nzQ__kA9xm0I5w3SMFce54gVq9pCdLU44mk1ya0g7w6iZUzNPqZk5NXNIrSx9PCjDbNyYIFiXnzebRgjNBCvc-z3nEPF5PM-ElPwvIkygrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911999373</pqid></control><display><type>article</type><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</creator><creatorcontrib>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</creatorcontrib><description>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2008.2010830</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Chemical mechanical polishing ; Chemical processes ; Chemical technology ; Crosstalk ; crosstalk-induced delay ; Delay ; Delay effects ; Design engineering ; design for manufacturability ; Design. Technologies. Operation analysis. Testing ; dummy fill ; Electronics ; Exact sciences and technology ; Integrated circuits ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Nanostructure ; Noise ; Noise generators ; Noise reduction ; Parasitic capacitance ; Planarization ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Very large scale integration ; Wire</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2010-03, Vol.18 (3), p.378-391</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</citedby><cites>FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4814466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4814466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22448141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nieuwoudt, A.</creatorcontrib><creatorcontrib>Kawa, J.</creatorcontrib><creatorcontrib>Massoud, Y.</creatorcontrib><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</description><subject>Applied sciences</subject><subject>Chemical mechanical polishing</subject><subject>Chemical processes</subject><subject>Chemical technology</subject><subject>Crosstalk</subject><subject>crosstalk-induced delay</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Design engineering</subject><subject>design for manufacturability</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>dummy fill</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanostructure</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Noise reduction</subject><subject>Parasitic capacitance</subject><subject>Planarization</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Very large scale integration</subject><subject>Wire</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9v1DAQxSNEJUrhC8DFQkJcmtaOHds5ooW2kbZ_JBau1tSZgIvX3trZw_LpcbqrHrjgw3ik-c2T5r2qesfoGWO0O1_9WH7rzxpKdSmMak5fVMesbVXdlfey9FTyWjeMvqpe5_xAKROio8fVbpFizhP433Ufhq3FgXxBD7tTchNdxlMCYSB9mDDZGALaidx5CJDcH5hcDKRfb7yzT30mcSQXzntyjUWQuEBuIMRswSO5S9FizmSF9leIPv7cvamORvAZ3x7-k-r7xdfV4qpe3l72i8_L2nKtp1rfCz40ioFtxkGNnbTM3isN1EpmuRRDK7HloEBpOggAzVlDJTStAitb2_GT6tNed5Pi4xbzZNYuW_TlDIzbbLRqKZNUy_-SSnDZKq5nzQ__kA9xm0I5w3SMFce54gVq9pCdLU44mk1ya0g7w6iZUzNPqZk5NXNIrSx9PCjDbNyYIFiXnzebRgjNBCvc-z3nEPF5PM-ElPwvIkygrg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Nieuwoudt, A.</creator><creator>Kawa, J.</creator><creator>Massoud, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</title><author>Nieuwoudt, A. ; Kawa, J. ; Massoud, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-8b43d271ac2fd7f96c1cb78a0c61c364d56e53a7a780d4aa831206a257ac65c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical mechanical polishing</topic><topic>Chemical processes</topic><topic>Chemical technology</topic><topic>Crosstalk</topic><topic>crosstalk-induced delay</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Design engineering</topic><topic>design for manufacturability</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>dummy fill</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanostructure</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Noise reduction</topic><topic>Parasitic capacitance</topic><topic>Planarization</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Very large scale integration</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieuwoudt, A.</creatorcontrib><creatorcontrib>Kawa, J.</creatorcontrib><creatorcontrib>Massoud, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nieuwoudt, A.</au><au>Kawa, J.</au><au>Massoud, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>18</volume><issue>3</issue><spage>378</spage><epage>391</epage><pages>378-391</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we investigate the crosstalk-induced delay, noise, and chemical mechanical polishing (CMP)-induced thickness-variation implications of dummy fill generated using rule-based wire track fill techniques and CMP-aware model-based methods for designs implemented in 65 nm process technology. The results indicate that fill generated using rule-based and CMP-aware model-based methods can have a significant impact on parasitic capacitance, interconnect planarization, and individual path delay variation. Crosstalk-induced delay and noise are significantly reduced in the grounded-fill cases, and designs with floating fill also experience a reduction in average crosstalk-induced delay and noise, which is in contrast to the predictions of previous studies on small-scale interconnect structures. When crosstalk effects are included in the analysis, the observed delay behavior is significantly different from the delay modeled without considering crosstalk effects. Consequently, crosstalk-induced delay and noise must be simultaneously considered in addition to parasitic capacitance and interconnect planarization when developing future fill generation methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2008.2010830</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2010-03, Vol.18 (3), p.378-391 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_miscellaneous_875016086 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Chemical mechanical polishing Chemical processes Chemical technology Crosstalk crosstalk-induced delay Delay Delay effects Design engineering design for manufacturability Design. Technologies. Operation analysis. Testing dummy fill Electronics Exact sciences and technology Integrated circuits Mathematical models Microelectronic fabrication (materials and surfaces technology) Nanostructure Noise Noise generators Noise reduction Parasitic capacitance Planarization Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Very large scale integration Wire |
title | Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosstalk-Induced%20Delay,%20Noise,%20and%20Interconnect%20Planarization%20Implications%20of%20Fill%20Metal%20in%20Nanoscale%20Process%20Technology&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Nieuwoudt,%20A.&rft.date=2010-03-01&rft.volume=18&rft.issue=3&rft.spage=378&rft.epage=391&rft.pages=378-391&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2008.2010830&rft_dat=%3Cproquest_RIE%3E875016086%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911999373&rft_id=info:pmid/&rft_ieee_id=4814466&rfr_iscdi=true |