The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell Cycle 2011-06, Vol.10 (12), p.1998-2007
Hauptverfasser: Trego, Kelly S., Chernikova, Sophia B., Davalos, Albert R., Perry, J. Jefferson P., Finger, L. David, Ng, Cliff, Tsai, Miaw-Sheue, Yannone, Steven M., Tainer, John A., Campisi, Judith, Cooper, Priscilla K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 12
container_start_page 1998
container_title Cell Cycle
container_volume 10
creator Trego, Kelly S.
Chernikova, Sophia B.
Davalos, Albert R.
Perry, J. Jefferson P.
Finger, L. David
Ng, Cliff
Tsai, Miaw-Sheue
Yannone, Steven M.
Tainer, John A.
Campisi, Judith
Cooper, Priscilla K.
description XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.
doi_str_mv 10.4161/cc.10.12.15878
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_874484427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>874484427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-ba045f3000a17983cd2425c866d007994668f657da540789dc77a420036e94513</originalsourceid><addsrcrecordid>eNqNkkFvEzEQhVcIREvhyhFZXDhtsHfttfeCVAUoSFVBKKjcLGc82xht7GA7qfLv63RLBBIHTh7Z37x5M-OqesnojLOOvQWYlZA1MyaUVI-qUyYEqzml4vEhblXNGWUn1bOUflLaKNmzp9VJUyilaHNa7RYrJO-vzknEjXGRoLfBb2FEk5D8-HpBnM8YDeRErIsIedwT4y0Zth6yC96M5eLW5RXJRej62xVZ4ejgkG1xKLzbYdEg1xg9RpL23sawxufVk8GMCV88nGfV948fFvNP9eWXi8_z88saBFe5XhrKxdBSSg2TvWrBNrwRoLrOUir7nnedGjohrRGcStVbkNLwhtK2w54L1p5V7ybdzXa5RgvoczSj3kS3NnGvg3H67xfvVvom7HTLBOdMFYHXk0BI2ekELiOsIHhfWtNlspJKWqA3D1Vi-LXFlPXaJcBxNB7DNmklOVecN7KQs4mEGFKKOBytMKoPC9UAh5A1-n6hJeHVnw0c8d8bLACdgFLMYlq6UEyiBzyii4g3YT6fVDd2-I-UYsLE7Mo3ONropxTnhxDX5jbE0eps9mOIQzQeXCoj-3cLd7l70n8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874484427</pqid></control><display><type>article</type><title>The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Trego, Kelly S. ; Chernikova, Sophia B. ; Davalos, Albert R. ; Perry, J. Jefferson P. ; Finger, L. David ; Ng, Cliff ; Tsai, Miaw-Sheue ; Yannone, Steven M. ; Tainer, John A. ; Campisi, Judith ; Cooper, Priscilla K.</creator><creatorcontrib>Trego, Kelly S. ; Chernikova, Sophia B. ; Davalos, Albert R. ; Perry, J. Jefferson P. ; Finger, L. David ; Ng, Cliff ; Tsai, Miaw-Sheue ; Yannone, Steven M. ; Tainer, John A. ; Campisi, Judith ; Cooper, Priscilla K. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.4161/cc.10.12.15878</identifier><identifier>PMID: 21558802</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>59 ; AGING ; ANNEALING ; Binding ; Binding Sites ; Biology ; Bioscience ; Calcium ; Cancer ; Cell ; CONGENITAL DISEASES ; Cycle ; DEFECTS ; DNA ; DNA Helicases ; DNA REPAIR ; DNA Replication ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - physiology ; ENDONUCLEASES ; Endonucleases - metabolism ; Endonucleases - physiology ; EXCISION REPAIR ; Exodeoxyribonucleases - metabolism ; Exodeoxyribonucleases - physiology ; HEREDITARY DISEASES ; Humans ; INTERMEDIATE STRUCTURE ; Landes ; MUTATIONS ; Nuclear Proteins - metabolism ; Nuclear Proteins - physiology ; NUCLEOLI ; NUCLEOTIDES ; Organogenesis ; Protein Binding ; PROTEINS ; RecQ Helicases - metabolism ; RecQ Helicases - physiology ; S Phase ; SKIN DISEASES ; Transcription Factors - metabolism ; Transcription Factors - physiology ; Werner Syndrome - enzymology ; Werner Syndrome Helicase ; Xeroderma Pigmentosum</subject><ispartof>Cell Cycle, 2011-06, Vol.10 (12), p.1998-2007</ispartof><rights>Copyright © 2011 Landes Bioscience 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-ba045f3000a17983cd2425c866d007994668f657da540789dc77a420036e94513</citedby><cites>FETCH-LOGICAL-c548t-ba045f3000a17983cd2425c866d007994668f657da540789dc77a420036e94513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154418/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154418/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21558802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1017070$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trego, Kelly S.</creatorcontrib><creatorcontrib>Chernikova, Sophia B.</creatorcontrib><creatorcontrib>Davalos, Albert R.</creatorcontrib><creatorcontrib>Perry, J. Jefferson P.</creatorcontrib><creatorcontrib>Finger, L. David</creatorcontrib><creatorcontrib>Ng, Cliff</creatorcontrib><creatorcontrib>Tsai, Miaw-Sheue</creatorcontrib><creatorcontrib>Yannone, Steven M.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Campisi, Judith</creatorcontrib><creatorcontrib>Cooper, Priscilla K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome</title><title>Cell Cycle</title><addtitle>Cell Cycle</addtitle><description>XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.</description><subject>59</subject><subject>AGING</subject><subject>ANNEALING</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>CONGENITAL DISEASES</subject><subject>Cycle</subject><subject>DEFECTS</subject><subject>DNA</subject><subject>DNA Helicases</subject><subject>DNA REPAIR</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>ENDONUCLEASES</subject><subject>Endonucleases - metabolism</subject><subject>Endonucleases - physiology</subject><subject>EXCISION REPAIR</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Exodeoxyribonucleases - physiology</subject><subject>HEREDITARY DISEASES</subject><subject>Humans</subject><subject>INTERMEDIATE STRUCTURE</subject><subject>Landes</subject><subject>MUTATIONS</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - physiology</subject><subject>NUCLEOLI</subject><subject>NUCLEOTIDES</subject><subject>Organogenesis</subject><subject>Protein Binding</subject><subject>PROTEINS</subject><subject>RecQ Helicases - metabolism</subject><subject>RecQ Helicases - physiology</subject><subject>S Phase</subject><subject>SKIN DISEASES</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription Factors - physiology</subject><subject>Werner Syndrome - enzymology</subject><subject>Werner Syndrome Helicase</subject><subject>Xeroderma Pigmentosum</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFvEzEQhVcIREvhyhFZXDhtsHfttfeCVAUoSFVBKKjcLGc82xht7GA7qfLv63RLBBIHTh7Z37x5M-OqesnojLOOvQWYlZA1MyaUVI-qUyYEqzml4vEhblXNGWUn1bOUflLaKNmzp9VJUyilaHNa7RYrJO-vzknEjXGRoLfBb2FEk5D8-HpBnM8YDeRErIsIedwT4y0Zth6yC96M5eLW5RXJRej62xVZ4ejgkG1xKLzbYdEg1xg9RpL23sawxufVk8GMCV88nGfV948fFvNP9eWXi8_z88saBFe5XhrKxdBSSg2TvWrBNrwRoLrOUir7nnedGjohrRGcStVbkNLwhtK2w54L1p5V7ybdzXa5RgvoczSj3kS3NnGvg3H67xfvVvom7HTLBOdMFYHXk0BI2ekELiOsIHhfWtNlspJKWqA3D1Vi-LXFlPXaJcBxNB7DNmklOVecN7KQs4mEGFKKOBytMKoPC9UAh5A1-n6hJeHVnw0c8d8bLACdgFLMYlq6UEyiBzyii4g3YT6fVDd2-I-UYsLE7Mo3ONropxTnhxDX5jbE0eps9mOIQzQeXCoj-3cLd7l70n8</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Trego, Kelly S.</creator><creator>Chernikova, Sophia B.</creator><creator>Davalos, Albert R.</creator><creator>Perry, J. Jefferson P.</creator><creator>Finger, L. David</creator><creator>Ng, Cliff</creator><creator>Tsai, Miaw-Sheue</creator><creator>Yannone, Steven M.</creator><creator>Tainer, John A.</creator><creator>Campisi, Judith</creator><creator>Cooper, Priscilla K.</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110615</creationdate><title>The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome</title><author>Trego, Kelly S. ; Chernikova, Sophia B. ; Davalos, Albert R. ; Perry, J. Jefferson P. ; Finger, L. David ; Ng, Cliff ; Tsai, Miaw-Sheue ; Yannone, Steven M. ; Tainer, John A. ; Campisi, Judith ; Cooper, Priscilla K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-ba045f3000a17983cd2425c866d007994668f657da540789dc77a420036e94513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>59</topic><topic>AGING</topic><topic>ANNEALING</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>CONGENITAL DISEASES</topic><topic>Cycle</topic><topic>DEFECTS</topic><topic>DNA</topic><topic>DNA Helicases</topic><topic>DNA REPAIR</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>ENDONUCLEASES</topic><topic>Endonucleases - metabolism</topic><topic>Endonucleases - physiology</topic><topic>EXCISION REPAIR</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Exodeoxyribonucleases - physiology</topic><topic>HEREDITARY DISEASES</topic><topic>Humans</topic><topic>INTERMEDIATE STRUCTURE</topic><topic>Landes</topic><topic>MUTATIONS</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - physiology</topic><topic>NUCLEOLI</topic><topic>NUCLEOTIDES</topic><topic>Organogenesis</topic><topic>Protein Binding</topic><topic>PROTEINS</topic><topic>RecQ Helicases - metabolism</topic><topic>RecQ Helicases - physiology</topic><topic>S Phase</topic><topic>SKIN DISEASES</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription Factors - physiology</topic><topic>Werner Syndrome - enzymology</topic><topic>Werner Syndrome Helicase</topic><topic>Xeroderma Pigmentosum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trego, Kelly S.</creatorcontrib><creatorcontrib>Chernikova, Sophia B.</creatorcontrib><creatorcontrib>Davalos, Albert R.</creatorcontrib><creatorcontrib>Perry, J. Jefferson P.</creatorcontrib><creatorcontrib>Finger, L. David</creatorcontrib><creatorcontrib>Ng, Cliff</creatorcontrib><creatorcontrib>Tsai, Miaw-Sheue</creatorcontrib><creatorcontrib>Yannone, Steven M.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Campisi, Judith</creatorcontrib><creatorcontrib>Cooper, Priscilla K.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell Cycle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trego, Kelly S.</au><au>Chernikova, Sophia B.</au><au>Davalos, Albert R.</au><au>Perry, J. Jefferson P.</au><au>Finger, L. David</au><au>Ng, Cliff</au><au>Tsai, Miaw-Sheue</au><au>Yannone, Steven M.</au><au>Tainer, John A.</au><au>Campisi, Judith</au><au>Cooper, Priscilla K.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome</atitle><jtitle>Cell Cycle</jtitle><addtitle>Cell Cycle</addtitle><date>2011-06-15</date><risdate>2011</risdate><volume>10</volume><issue>12</issue><spage>1998</spage><epage>2007</epage><pages>1998-2007</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>21558802</pmid><doi>10.4161/cc.10.12.15878</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell Cycle, 2011-06, Vol.10 (12), p.1998-2007
issn 1538-4101
1551-4005
language eng
recordid cdi_proquest_miscellaneous_874484427
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 59
AGING
ANNEALING
Binding
Binding Sites
Biology
Bioscience
Calcium
Cancer
Cell
CONGENITAL DISEASES
Cycle
DEFECTS
DNA
DNA Helicases
DNA REPAIR
DNA Replication
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
ENDONUCLEASES
Endonucleases - metabolism
Endonucleases - physiology
EXCISION REPAIR
Exodeoxyribonucleases - metabolism
Exodeoxyribonucleases - physiology
HEREDITARY DISEASES
Humans
INTERMEDIATE STRUCTURE
Landes
MUTATIONS
Nuclear Proteins - metabolism
Nuclear Proteins - physiology
NUCLEOLI
NUCLEOTIDES
Organogenesis
Protein Binding
PROTEINS
RecQ Helicases - metabolism
RecQ Helicases - physiology
S Phase
SKIN DISEASES
Transcription Factors - metabolism
Transcription Factors - physiology
Werner Syndrome - enzymology
Werner Syndrome Helicase
Xeroderma Pigmentosum
title The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DNA%20repair%20endonuclease%20XPG%20interacts%20directly%20and%20functionally%20with%20the%20WRN%20helicase%20defective%20in%20Werner%20syndrome&rft.jtitle=Cell%20Cycle&rft.au=Trego,%20Kelly%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-06-15&rft.volume=10&rft.issue=12&rft.spage=1998&rft.epage=2007&rft.pages=1998-2007&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.4161/cc.10.12.15878&rft_dat=%3Cproquest_osti_%3E874484427%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874484427&rft_id=info:pmid/21558802&rfr_iscdi=true