Dynamic Solubility Limits in Nanosized Olivine LiFePO4

Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-07, Vol.133 (26), p.10222-10228
Hauptverfasser: Wagemaker, Marnix, Singh, Deepak P, Borghols, Wouter J.H, Lafont, Ugo, Haverkate, Lucas, Peterson, Vanessa K, Mulder, Fokko M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10228
container_issue 26
container_start_page 10222
container_title Journal of the American Chemical Society
container_volume 133
creator Wagemaker, Marnix
Singh, Deepak P
Borghols, Wouter J.H
Lafont, Ugo
Haverkate, Lucas
Peterson, Vanessa K
Mulder, Fokko M
description Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO4. In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.
doi_str_mv 10.1021/ja2026213
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_874296424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>874296424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a240t-8d5a683cbaaee370b19b17ee74b30bbf89c23e118624dec7bb592a419ce53a773</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMotlYPfgHZi3hazUyym-Qo1apQrKCeQ7I7hZT9Uze7Qv30rlg9PR7vx2PmMXYO_Bo4ws3GIcccQRywKWTI0wwwP2RTzjmmSudiwk5i3IxWooZjNkHIjDYSpiy_2zWuDkXy2laDD1Xod8ky1KGPSWiSZ9e0MXxRmayq8BkaGrMFvazkKTtauyrS2V5n7H1x_zZ_TJerh6f57TJ1KHmf6jJzuRaFd45IKO7BeFBESnrBvV9rU6AgAJ2jLKlQ3mcGnQRTUCacUmLGrn57t137MVDsbR1iQVXlGmqHaLWSaHKJciQv9uTgayrttgu163b279URuPwFXBHtph26ZjzcArc_E9r_CcU3FzVe0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874296424</pqid></control><display><type>article</type><title>Dynamic Solubility Limits in Nanosized Olivine LiFePO4</title><source>American Chemical Society Journals</source><creator>Wagemaker, Marnix ; Singh, Deepak P ; Borghols, Wouter J.H ; Lafont, Ugo ; Haverkate, Lucas ; Peterson, Vanessa K ; Mulder, Fokko M</creator><creatorcontrib>Wagemaker, Marnix ; Singh, Deepak P ; Borghols, Wouter J.H ; Lafont, Ugo ; Haverkate, Lucas ; Peterson, Vanessa K ; Mulder, Fokko M</creatorcontrib><description>Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO4. In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2026213</identifier><identifier>PMID: 21598941</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2011-07, Vol.133 (26), p.10222-10228</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2026213$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2026213$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21598941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagemaker, Marnix</creatorcontrib><creatorcontrib>Singh, Deepak P</creatorcontrib><creatorcontrib>Borghols, Wouter J.H</creatorcontrib><creatorcontrib>Lafont, Ugo</creatorcontrib><creatorcontrib>Haverkate, Lucas</creatorcontrib><creatorcontrib>Peterson, Vanessa K</creatorcontrib><creatorcontrib>Mulder, Fokko M</creatorcontrib><title>Dynamic Solubility Limits in Nanosized Olivine LiFePO4</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO4. In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMotlYPfgHZi3hazUyym-Qo1apQrKCeQ7I7hZT9Uze7Qv30rlg9PR7vx2PmMXYO_Bo4ws3GIcccQRywKWTI0wwwP2RTzjmmSudiwk5i3IxWooZjNkHIjDYSpiy_2zWuDkXy2laDD1Xod8ky1KGPSWiSZ9e0MXxRmayq8BkaGrMFvazkKTtauyrS2V5n7H1x_zZ_TJerh6f57TJ1KHmf6jJzuRaFd45IKO7BeFBESnrBvV9rU6AgAJ2jLKlQ3mcGnQRTUCacUmLGrn57t137MVDsbR1iQVXlGmqHaLWSaHKJciQv9uTgayrttgu163b279URuPwFXBHtph26ZjzcArc_E9r_CcU3FzVe0A</recordid><startdate>20110706</startdate><enddate>20110706</enddate><creator>Wagemaker, Marnix</creator><creator>Singh, Deepak P</creator><creator>Borghols, Wouter J.H</creator><creator>Lafont, Ugo</creator><creator>Haverkate, Lucas</creator><creator>Peterson, Vanessa K</creator><creator>Mulder, Fokko M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20110706</creationdate><title>Dynamic Solubility Limits in Nanosized Olivine LiFePO4</title><author>Wagemaker, Marnix ; Singh, Deepak P ; Borghols, Wouter J.H ; Lafont, Ugo ; Haverkate, Lucas ; Peterson, Vanessa K ; Mulder, Fokko M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a240t-8d5a683cbaaee370b19b17ee74b30bbf89c23e118624dec7bb592a419ce53a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagemaker, Marnix</creatorcontrib><creatorcontrib>Singh, Deepak P</creatorcontrib><creatorcontrib>Borghols, Wouter J.H</creatorcontrib><creatorcontrib>Lafont, Ugo</creatorcontrib><creatorcontrib>Haverkate, Lucas</creatorcontrib><creatorcontrib>Peterson, Vanessa K</creatorcontrib><creatorcontrib>Mulder, Fokko M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagemaker, Marnix</au><au>Singh, Deepak P</au><au>Borghols, Wouter J.H</au><au>Lafont, Ugo</au><au>Haverkate, Lucas</au><au>Peterson, Vanessa K</au><au>Mulder, Fokko M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Solubility Limits in Nanosized Olivine LiFePO4</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-07-06</date><risdate>2011</risdate><volume>133</volume><issue>26</issue><spage>10222</spage><epage>10228</epage><pages>10222-10228</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO4. In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21598941</pmid><doi>10.1021/ja2026213</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-07, Vol.133 (26), p.10222-10228
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_874296424
source American Chemical Society Journals
title Dynamic Solubility Limits in Nanosized Olivine LiFePO4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Solubility%20Limits%20in%20Nanosized%20Olivine%20LiFePO4&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wagemaker,%20Marnix&rft.date=2011-07-06&rft.volume=133&rft.issue=26&rft.spage=10222&rft.epage=10228&rft.pages=10222-10228&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2026213&rft_dat=%3Cproquest_pubme%3E874296424%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874296424&rft_id=info:pmid/21598941&rfr_iscdi=true