Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites

The results of spectroscopic and structural studies of phase composition and defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2011-06, Vol.75 (11), p.3155-3165
Hauptverfasser: Shiryaev, A.A., Fisenko, A.V., Vlasov, I.I., Semjonova, L.F., Nagel, P., Schuppler, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results of spectroscopic and structural studies of phase composition and defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonation and by the Chemical Vapor Deposition (CVD)-process. Most of the nitrogen in MND appears to be confined to lattice imperfections, such as crystallite/twin boundaries and other extended defects, while the concentration of nitrogen in the MND lattice is low. It is suggested that the N-rich sub-population of MND grains may have been formed with high growth rates in environments rich in accessible N (i.e., N in atomic form or as weakly bonded compounds). For the first time the silicon-vacancy complex (the “silicon” defect) is observed in MND by photoluminescence spectroscopy.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2011.03.004