Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes

Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2011-03, Vol.29 (3), p.255-265
Hauptverfasser: Bantscheff, Marcus, Hopf, Carsten, Savitski, Mikhail M, Dittmann, Antje, Grandi, Paola, Michon, Anne-Marie, Schlegl, Judith, Abraham, Yann, Becher, Isabelle, Bergamini, Giovanna, Boesche, Markus, Delling, Manja, Dümpelfeld, Birgit, Eberhard, Dirk, Huthmacher, Carola, Mathieson, Toby, Poeckel, Daniel, Reader, Valérie, Strunk, Katja, Sweetman, Gavain, Kruse, Ulrich, Neubauer, Gitte, Ramsden, Nigel G, Drewes, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 3
container_start_page 255
container_title Nature biotechnology
container_volume 29
creator Bantscheff, Marcus
Hopf, Carsten
Savitski, Mikhail M
Dittmann, Antje
Grandi, Paola
Michon, Anne-Marie
Schlegl, Judith
Abraham, Yann
Becher, Isabelle
Bergamini, Giovanna
Boesche, Markus
Delling, Manja
Dümpelfeld, Birgit
Eberhard, Dirk
Huthmacher, Carola
Mathieson, Toby
Poeckel, Daniel
Reader, Valérie
Strunk, Katja
Sweetman, Gavain
Kruse, Ulrich
Neubauer, Gitte
Ramsden, Nigel G
Drewes, Gerard
description Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of using isolated recombinant proteins in certain drug screens. The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.
doi_str_mv 10.1038/nbt.1759
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_874197634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A252005785</galeid><sourcerecordid>A252005785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-c11a1f8db5e36be784667d71de8cb31cfbc6d93564444789449bf34444f3c9753</originalsourceid><addsrcrecordid>eNqN0ktv1DAQAOAIgWgpSPwCFIEQIJFiJ34kx9UWaKVKlXgduESOM8m6Suytx6nKv6_DLmwXDuCDH_Jne8aaJHlKyTElRfnONuGYSl7dSw4pZyKjohL345yUMiOUi4PkEeIlIUQwIR4mBznNeVkwdph8X65gdGvvArjRaEzjtDODsX3quvT0ZLFMjV2ZxgTnMfVwDWrAFGEAHcw1pEH5HsJdrt24HuAG8HHyoIsYnmzHo-Trh_dflqfZ-cXHs-XiPNOCsJBpShXtyrbhUIgGZBlDlK2kLZS6KajuGi3aquCCxSbLirGq6Yp50RW6krw4Sl5t7o2hX02AoR4NahgGZcFNWJeS0UqKgv1bciEl4z_l8z_kpZu8jWlEJCXJKzGjFxvUqwFqYzsXvNLzlfUi5zkhXJZzeG_2lHY2wE3o1YRYn33-9P_24tu-fXvHNhMaCxg7NP0q4ObIHn-94do7RA9dvfZmVP5HTUk9F1Edi6ieiyjSZ9vkp2aE9jf8VTURvNwChVoNnVdWG9y5ohJUynKXDsYt24Pf_eJfj94C4_bYUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857702964</pqid></control><display><type>article</type><title>Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes</title><source>Nature_系列刊</source><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Bantscheff, Marcus ; Hopf, Carsten ; Savitski, Mikhail M ; Dittmann, Antje ; Grandi, Paola ; Michon, Anne-Marie ; Schlegl, Judith ; Abraham, Yann ; Becher, Isabelle ; Bergamini, Giovanna ; Boesche, Markus ; Delling, Manja ; Dümpelfeld, Birgit ; Eberhard, Dirk ; Huthmacher, Carola ; Mathieson, Toby ; Poeckel, Daniel ; Reader, Valérie ; Strunk, Katja ; Sweetman, Gavain ; Kruse, Ulrich ; Neubauer, Gitte ; Ramsden, Nigel G ; Drewes, Gerard</creator><creatorcontrib>Bantscheff, Marcus ; Hopf, Carsten ; Savitski, Mikhail M ; Dittmann, Antje ; Grandi, Paola ; Michon, Anne-Marie ; Schlegl, Judith ; Abraham, Yann ; Becher, Isabelle ; Bergamini, Giovanna ; Boesche, Markus ; Delling, Manja ; Dümpelfeld, Birgit ; Eberhard, Dirk ; Huthmacher, Carola ; Mathieson, Toby ; Poeckel, Daniel ; Reader, Valérie ; Strunk, Katja ; Sweetman, Gavain ; Kruse, Ulrich ; Neubauer, Gitte ; Ramsden, Nigel G ; Drewes, Gerard</creatorcontrib><description>Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of using isolated recombinant proteins in certain drug screens. The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.1759</identifier><identifier>PMID: 21258344</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/154/555 ; 631/61/475 ; Agriculture ; Anti-inflammatory agents ; Antimitotic agents ; Antineoplastic agents ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Enzyme inhibitors ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Health aspects ; Health. Pharmaceutical industry ; Histone Deacetylases - chemistry ; Histone Deacetylases - metabolism ; Hydrolases ; Industrial applications and implications. Economical aspects ; Inhibitors ; Life Sciences ; Mass spectrometry ; Mass Spectrometry - methods ; Miscellaneous ; Peptide Mapping - methods ; Phylogenetics ; Physiological aspects ; Protein folding ; Protein Interaction Mapping - methods ; Proteomics ; Proteomics - methods</subject><ispartof>Nature biotechnology, 2011-03, Vol.29 (3), p.255-265</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-c11a1f8db5e36be784667d71de8cb31cfbc6d93564444789449bf34444f3c9753</citedby><cites>FETCH-LOGICAL-c604t-c11a1f8db5e36be784667d71de8cb31cfbc6d93564444789449bf34444f3c9753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.1759$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.1759$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23961778$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21258344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bantscheff, Marcus</creatorcontrib><creatorcontrib>Hopf, Carsten</creatorcontrib><creatorcontrib>Savitski, Mikhail M</creatorcontrib><creatorcontrib>Dittmann, Antje</creatorcontrib><creatorcontrib>Grandi, Paola</creatorcontrib><creatorcontrib>Michon, Anne-Marie</creatorcontrib><creatorcontrib>Schlegl, Judith</creatorcontrib><creatorcontrib>Abraham, Yann</creatorcontrib><creatorcontrib>Becher, Isabelle</creatorcontrib><creatorcontrib>Bergamini, Giovanna</creatorcontrib><creatorcontrib>Boesche, Markus</creatorcontrib><creatorcontrib>Delling, Manja</creatorcontrib><creatorcontrib>Dümpelfeld, Birgit</creatorcontrib><creatorcontrib>Eberhard, Dirk</creatorcontrib><creatorcontrib>Huthmacher, Carola</creatorcontrib><creatorcontrib>Mathieson, Toby</creatorcontrib><creatorcontrib>Poeckel, Daniel</creatorcontrib><creatorcontrib>Reader, Valérie</creatorcontrib><creatorcontrib>Strunk, Katja</creatorcontrib><creatorcontrib>Sweetman, Gavain</creatorcontrib><creatorcontrib>Kruse, Ulrich</creatorcontrib><creatorcontrib>Neubauer, Gitte</creatorcontrib><creatorcontrib>Ramsden, Nigel G</creatorcontrib><creatorcontrib>Drewes, Gerard</creatorcontrib><title>Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of using isolated recombinant proteins in certain drug screens. The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.</description><subject>631/154/555</subject><subject>631/61/475</subject><subject>Agriculture</subject><subject>Anti-inflammatory agents</subject><subject>Antimitotic agents</subject><subject>Antineoplastic agents</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Enzyme inhibitors</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health aspects</subject><subject>Health. Pharmaceutical industry</subject><subject>Histone Deacetylases - chemistry</subject><subject>Histone Deacetylases - metabolism</subject><subject>Hydrolases</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Inhibitors</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Miscellaneous</subject><subject>Peptide Mapping - methods</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>Protein folding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ktv1DAQAOAIgWgpSPwCFIEQIJFiJ34kx9UWaKVKlXgduESOM8m6Suytx6nKv6_DLmwXDuCDH_Jne8aaJHlKyTElRfnONuGYSl7dSw4pZyKjohL345yUMiOUi4PkEeIlIUQwIR4mBznNeVkwdph8X65gdGvvArjRaEzjtDODsX3quvT0ZLFMjV2ZxgTnMfVwDWrAFGEAHcw1pEH5HsJdrt24HuAG8HHyoIsYnmzHo-Trh_dflqfZ-cXHs-XiPNOCsJBpShXtyrbhUIgGZBlDlK2kLZS6KajuGi3aquCCxSbLirGq6Yp50RW6krw4Sl5t7o2hX02AoR4NahgGZcFNWJeS0UqKgv1bciEl4z_l8z_kpZu8jWlEJCXJKzGjFxvUqwFqYzsXvNLzlfUi5zkhXJZzeG_2lHY2wE3o1YRYn33-9P_24tu-fXvHNhMaCxg7NP0q4ObIHn-94do7RA9dvfZmVP5HTUk9F1Edi6ieiyjSZ9vkp2aE9jf8VTURvNwChVoNnVdWG9y5ohJUynKXDsYt24Pf_eJfj94C4_bYUg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Bantscheff, Marcus</creator><creator>Hopf, Carsten</creator><creator>Savitski, Mikhail M</creator><creator>Dittmann, Antje</creator><creator>Grandi, Paola</creator><creator>Michon, Anne-Marie</creator><creator>Schlegl, Judith</creator><creator>Abraham, Yann</creator><creator>Becher, Isabelle</creator><creator>Bergamini, Giovanna</creator><creator>Boesche, Markus</creator><creator>Delling, Manja</creator><creator>Dümpelfeld, Birgit</creator><creator>Eberhard, Dirk</creator><creator>Huthmacher, Carola</creator><creator>Mathieson, Toby</creator><creator>Poeckel, Daniel</creator><creator>Reader, Valérie</creator><creator>Strunk, Katja</creator><creator>Sweetman, Gavain</creator><creator>Kruse, Ulrich</creator><creator>Neubauer, Gitte</creator><creator>Ramsden, Nigel G</creator><creator>Drewes, Gerard</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes</title><author>Bantscheff, Marcus ; Hopf, Carsten ; Savitski, Mikhail M ; Dittmann, Antje ; Grandi, Paola ; Michon, Anne-Marie ; Schlegl, Judith ; Abraham, Yann ; Becher, Isabelle ; Bergamini, Giovanna ; Boesche, Markus ; Delling, Manja ; Dümpelfeld, Birgit ; Eberhard, Dirk ; Huthmacher, Carola ; Mathieson, Toby ; Poeckel, Daniel ; Reader, Valérie ; Strunk, Katja ; Sweetman, Gavain ; Kruse, Ulrich ; Neubauer, Gitte ; Ramsden, Nigel G ; Drewes, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-c11a1f8db5e36be784667d71de8cb31cfbc6d93564444789449bf34444f3c9753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/154/555</topic><topic>631/61/475</topic><topic>Agriculture</topic><topic>Anti-inflammatory agents</topic><topic>Antimitotic agents</topic><topic>Antineoplastic agents</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Enzyme inhibitors</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health aspects</topic><topic>Health. Pharmaceutical industry</topic><topic>Histone Deacetylases - chemistry</topic><topic>Histone Deacetylases - metabolism</topic><topic>Hydrolases</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Inhibitors</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Miscellaneous</topic><topic>Peptide Mapping - methods</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>Protein folding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bantscheff, Marcus</creatorcontrib><creatorcontrib>Hopf, Carsten</creatorcontrib><creatorcontrib>Savitski, Mikhail M</creatorcontrib><creatorcontrib>Dittmann, Antje</creatorcontrib><creatorcontrib>Grandi, Paola</creatorcontrib><creatorcontrib>Michon, Anne-Marie</creatorcontrib><creatorcontrib>Schlegl, Judith</creatorcontrib><creatorcontrib>Abraham, Yann</creatorcontrib><creatorcontrib>Becher, Isabelle</creatorcontrib><creatorcontrib>Bergamini, Giovanna</creatorcontrib><creatorcontrib>Boesche, Markus</creatorcontrib><creatorcontrib>Delling, Manja</creatorcontrib><creatorcontrib>Dümpelfeld, Birgit</creatorcontrib><creatorcontrib>Eberhard, Dirk</creatorcontrib><creatorcontrib>Huthmacher, Carola</creatorcontrib><creatorcontrib>Mathieson, Toby</creatorcontrib><creatorcontrib>Poeckel, Daniel</creatorcontrib><creatorcontrib>Reader, Valérie</creatorcontrib><creatorcontrib>Strunk, Katja</creatorcontrib><creatorcontrib>Sweetman, Gavain</creatorcontrib><creatorcontrib>Kruse, Ulrich</creatorcontrib><creatorcontrib>Neubauer, Gitte</creatorcontrib><creatorcontrib>Ramsden, Nigel G</creatorcontrib><creatorcontrib>Drewes, Gerard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bantscheff, Marcus</au><au>Hopf, Carsten</au><au>Savitski, Mikhail M</au><au>Dittmann, Antje</au><au>Grandi, Paola</au><au>Michon, Anne-Marie</au><au>Schlegl, Judith</au><au>Abraham, Yann</au><au>Becher, Isabelle</au><au>Bergamini, Giovanna</au><au>Boesche, Markus</au><au>Delling, Manja</au><au>Dümpelfeld, Birgit</au><au>Eberhard, Dirk</au><au>Huthmacher, Carola</au><au>Mathieson, Toby</au><au>Poeckel, Daniel</au><au>Reader, Valérie</au><au>Strunk, Katja</au><au>Sweetman, Gavain</au><au>Kruse, Ulrich</au><au>Neubauer, Gitte</au><au>Ramsden, Nigel G</au><au>Drewes, Gerard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>29</volume><issue>3</issue><spage>255</spage><epage>265</epage><pages>255-265</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Bantscheff et al . use chemoproteomics to measure the affinity of small molecules for megadalton protein complexes in cell extracts. Differences in the selectivity of HDAC inhibitors observed when native HDAC complexes are compared with their purified catalytic subunits suggest the limitations of using isolated recombinant proteins in certain drug screens. The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21258344</pmid><doi>10.1038/nbt.1759</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2011-03, Vol.29 (3), p.255-265
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_874197634
source Nature_系列刊; MEDLINE; SpringerLink_现刊
subjects 631/154/555
631/61/475
Agriculture
Anti-inflammatory agents
Antimitotic agents
Antineoplastic agents
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Enzyme inhibitors
Enzymes
Fundamental and applied biological sciences. Psychology
Health aspects
Health. Pharmaceutical industry
Histone Deacetylases - chemistry
Histone Deacetylases - metabolism
Hydrolases
Industrial applications and implications. Economical aspects
Inhibitors
Life Sciences
Mass spectrometry
Mass Spectrometry - methods
Miscellaneous
Peptide Mapping - methods
Phylogenetics
Physiological aspects
Protein folding
Protein Interaction Mapping - methods
Proteomics
Proteomics - methods
title Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoproteomics%20profiling%20of%20HDAC%20inhibitors%20reveals%20selective%20targeting%20of%20HDAC%20complexes&rft.jtitle=Nature%20biotechnology&rft.au=Bantscheff,%20Marcus&rft.date=2011-03-01&rft.volume=29&rft.issue=3&rft.spage=255&rft.epage=265&rft.pages=255-265&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt.1759&rft_dat=%3Cgale_proqu%3EA252005785%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857702964&rft_id=info:pmid/21258344&rft_galeid=A252005785&rfr_iscdi=true