Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material
► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease i...
Gespeichert in:
Veröffentlicht in: | Solar energy 2011-07, Vol.85 (7), p.1440-1446 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1446 |
---|---|
container_issue | 7 |
container_start_page | 1440 |
container_title | Solar energy |
container_volume | 85 |
creator | Malvi, C.S. Dixon-Hardy, D.W. Crook, R. |
description | ► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired.
In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20
°C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity. |
doi_str_mv | 10.1016/j.solener.2011.03.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874191167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X11001101</els_id><sourcerecordid>2398474231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-BCEIopduU-l8dJ9ElnVXWPCyB28hXZ2eyZDujElmYf79ZpnBgwc91eV536LqIeQ9sBYYqC_7NsfgVpdazgBa1rWM6xdkA0JDA1zql2TDWNc3bOC_XpM3Oe8ZAw293pD5pua2JzraYFd0dImTCzTOFOMy-tVN9LCLJT7GUKxHWhfZ1JSdS4sNNJ9ycQv1K8Z0iMkWv24rb7OjuLPrttbZ4pK34S15NduQ3bvLvCIP328eru-a-5-3P66_3TcoNC-NVgOOWg6Mcd5xLnEUiKybpVX9NE8cFHI-CqHEhKBHh8OsoLf9CFICYHdFPp1rDyn-PrpczOIzulBvc_GYTa8FDABKV_LzP0nQWoPgismKfvgL3cdjWusZtU_xgUkYKiTPEKaYc3KzOSS_2HQywMyzJbM3F0vm2ZJhnamWau7jpdxmtGFO1YLPf8Jc8G7oZF-5r2fO1e89-tqS0btqbPLJYTFT9P_Z9ARyJKtq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876290519</pqid></control><display><type>article</type><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><source>Elsevier ScienceDirect Journals</source><creator>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</creator><creatorcontrib>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</creatorcontrib><description>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired.
In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20
°C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2011.03.027</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Energy balance ; Energy. Thermal use of fuels ; Equipments, installations and applications ; Exact sciences and technology ; Heat conductivity ; Miscellaneous ; Natural energy ; Phase change material ; Phase change materials ; Photoelectric conversion ; Photovoltaic ; Photovoltaic cells ; Photovoltaic conversion ; Simulation ; Solar cells ; Solar energy ; Solar thermal ; Temperature ; Thermal conductivity ; Thermal properties ; Transport and storage of energy ; Waste heat</subject><ispartof>Solar energy, 2011-07, Vol.85 (7), p.1440-1446</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</citedby><cites>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X11001101$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24239358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malvi, C.S.</creatorcontrib><creatorcontrib>Dixon-Hardy, D.W.</creatorcontrib><creatorcontrib>Crook, R.</creatorcontrib><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><title>Solar energy</title><description>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired.
In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20
°C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Miscellaneous</subject><subject>Natural energy</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar thermal</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Transport and storage of energy</subject><subject>Waste heat</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-BCEIopduU-l8dJ9ElnVXWPCyB28hXZ2eyZDujElmYf79ZpnBgwc91eV536LqIeQ9sBYYqC_7NsfgVpdazgBa1rWM6xdkA0JDA1zql2TDWNc3bOC_XpM3Oe8ZAw293pD5pua2JzraYFd0dImTCzTOFOMy-tVN9LCLJT7GUKxHWhfZ1JSdS4sNNJ9ycQv1K8Z0iMkWv24rb7OjuLPrttbZ4pK34S15NduQ3bvLvCIP328eru-a-5-3P66_3TcoNC-NVgOOWg6Mcd5xLnEUiKybpVX9NE8cFHI-CqHEhKBHh8OsoLf9CFICYHdFPp1rDyn-PrpczOIzulBvc_GYTa8FDABKV_LzP0nQWoPgismKfvgL3cdjWusZtU_xgUkYKiTPEKaYc3KzOSS_2HQywMyzJbM3F0vm2ZJhnamWau7jpdxmtGFO1YLPf8Jc8G7oZF-5r2fO1e89-tqS0btqbPLJYTFT9P_Z9ARyJKtq</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Malvi, C.S.</creator><creator>Dixon-Hardy, D.W.</creator><creator>Crook, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110701</creationdate><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><author>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Miscellaneous</topic><topic>Natural energy</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar thermal</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Transport and storage of energy</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malvi, C.S.</creatorcontrib><creatorcontrib>Dixon-Hardy, D.W.</creatorcontrib><creatorcontrib>Crook, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malvi, C.S.</au><au>Dixon-Hardy, D.W.</au><au>Crook, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</atitle><jtitle>Solar energy</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>85</volume><issue>7</issue><spage>1440</spage><epage>1446</epage><pages>1440-1446</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired.
In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20
°C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2011.03.027</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2011-07, Vol.85 (7), p.1440-1446 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_874191167 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Computer simulation Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Energy Energy balance Energy. Thermal use of fuels Equipments, installations and applications Exact sciences and technology Heat conductivity Miscellaneous Natural energy Phase change material Phase change materials Photoelectric conversion Photovoltaic Photovoltaic cells Photovoltaic conversion Simulation Solar cells Solar energy Solar thermal Temperature Thermal conductivity Thermal properties Transport and storage of energy Waste heat |
title | Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20balance%20model%20of%20combined%20photovoltaic%20solar-thermal%20system%20incorporating%20phase%20change%20material&rft.jtitle=Solar%20energy&rft.au=Malvi,%20C.S.&rft.date=2011-07-01&rft.volume=85&rft.issue=7&rft.spage=1440&rft.epage=1446&rft.pages=1440-1446&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2011.03.027&rft_dat=%3Cproquest_cross%3E2398474231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876290519&rft_id=info:pmid/&rft_els_id=S0038092X11001101&rfr_iscdi=true |