Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material

► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2011-07, Vol.85 (7), p.1440-1446
Hauptverfasser: Malvi, C.S., Dixon-Hardy, D.W., Crook, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1446
container_issue 7
container_start_page 1440
container_title Solar energy
container_volume 85
creator Malvi, C.S.
Dixon-Hardy, D.W.
Crook, R.
description ► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired. In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20 °C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.
doi_str_mv 10.1016/j.solener.2011.03.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874191167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X11001101</els_id><sourcerecordid>2398474231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-BCEIopduU-l8dJ9ElnVXWPCyB28hXZ2eyZDujElmYf79ZpnBgwc91eV536LqIeQ9sBYYqC_7NsfgVpdazgBa1rWM6xdkA0JDA1zql2TDWNc3bOC_XpM3Oe8ZAw293pD5pua2JzraYFd0dImTCzTOFOMy-tVN9LCLJT7GUKxHWhfZ1JSdS4sNNJ9ycQv1K8Z0iMkWv24rb7OjuLPrttbZ4pK34S15NduQ3bvLvCIP328eru-a-5-3P66_3TcoNC-NVgOOWg6Mcd5xLnEUiKybpVX9NE8cFHI-CqHEhKBHh8OsoLf9CFICYHdFPp1rDyn-PrpczOIzulBvc_GYTa8FDABKV_LzP0nQWoPgismKfvgL3cdjWusZtU_xgUkYKiTPEKaYc3KzOSS_2HQywMyzJbM3F0vm2ZJhnamWau7jpdxmtGFO1YLPf8Jc8G7oZF-5r2fO1e89-tqS0btqbPLJYTFT9P_Z9ARyJKtq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876290519</pqid></control><display><type>article</type><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><source>Elsevier ScienceDirect Journals</source><creator>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</creator><creatorcontrib>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</creatorcontrib><description>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired. In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20 °C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2011.03.027</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Energy balance ; Energy. Thermal use of fuels ; Equipments, installations and applications ; Exact sciences and technology ; Heat conductivity ; Miscellaneous ; Natural energy ; Phase change material ; Phase change materials ; Photoelectric conversion ; Photovoltaic ; Photovoltaic cells ; Photovoltaic conversion ; Simulation ; Solar cells ; Solar energy ; Solar thermal ; Temperature ; Thermal conductivity ; Thermal properties ; Transport and storage of energy ; Waste heat</subject><ispartof>Solar energy, 2011-07, Vol.85 (7), p.1440-1446</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</citedby><cites>FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X11001101$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24239358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malvi, C.S.</creatorcontrib><creatorcontrib>Dixon-Hardy, D.W.</creatorcontrib><creatorcontrib>Crook, R.</creatorcontrib><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><title>Solar energy</title><description>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired. In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20 °C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Miscellaneous</subject><subject>Natural energy</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar thermal</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Transport and storage of energy</subject><subject>Waste heat</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-BCEIopduU-l8dJ9ElnVXWPCyB28hXZ2eyZDujElmYf79ZpnBgwc91eV536LqIeQ9sBYYqC_7NsfgVpdazgBa1rWM6xdkA0JDA1zql2TDWNc3bOC_XpM3Oe8ZAw293pD5pua2JzraYFd0dImTCzTOFOMy-tVN9LCLJT7GUKxHWhfZ1JSdS4sNNJ9ycQv1K8Z0iMkWv24rb7OjuLPrttbZ4pK34S15NduQ3bvLvCIP328eru-a-5-3P66_3TcoNC-NVgOOWg6Mcd5xLnEUiKybpVX9NE8cFHI-CqHEhKBHh8OsoLf9CFICYHdFPp1rDyn-PrpczOIzulBvc_GYTa8FDABKV_LzP0nQWoPgismKfvgL3cdjWusZtU_xgUkYKiTPEKaYc3KzOSS_2HQywMyzJbM3F0vm2ZJhnamWau7jpdxmtGFO1YLPf8Jc8G7oZF-5r2fO1e89-tqS0btqbPLJYTFT9P_Z9ARyJKtq</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Malvi, C.S.</creator><creator>Dixon-Hardy, D.W.</creator><creator>Crook, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110701</creationdate><title>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</title><author>Malvi, C.S. ; Dixon-Hardy, D.W. ; Crook, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-769cb75900223225cb4cc03f5a68dfd216c22b4464dc17bec9f618a8b15511c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Miscellaneous</topic><topic>Natural energy</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar thermal</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Transport and storage of energy</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malvi, C.S.</creatorcontrib><creatorcontrib>Dixon-Hardy, D.W.</creatorcontrib><creatorcontrib>Crook, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malvi, C.S.</au><au>Dixon-Hardy, D.W.</au><au>Crook, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material</atitle><jtitle>Solar energy</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>85</volume><issue>7</issue><spage>1440</spage><epage>1446</epage><pages>1440-1446</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>► We combine photovoltaic (PV), solar thermal (ST), and phase change material (PCM). ► The simulation uses a 1D energy balance model with thermally linked masses. ► We investigate PCM physical and thermal properties and water flow schemes. ► We find an improvement in PV performance with a decrease in ST performance. ► PCMs with tuneable melting points and high thermal conductivity are desired. In this paper an energy balance model and simulation results are presented for a generic combined photovoltaic (PV) solar thermal (ST) system that incorporates phase change material (PCM). This is a promising integration of technology because the PV converts visible and ultra-violet parts of the solar spectrum, the ST utilises infra-red parts of the spectrum and waste heat from the PV, and the PCM reduces the temperature of the PV which increases PV efficiency. Parameters that are investigated cover PCM physical and thermal properties and water flow schemes. By including an appropriate PCM in an optimised system, the PV output can be increased by typically 9% with an average water temperature rise of 20 °C. Although any increase in PV performance has an associated decrease in ST performance, a practical and worthwhile compromise can still be achieved. This paper demonstrates that there is considerable scope for experimental realisation of the combined PV/ST/PCM system particularly if this is coupled with the development of PCMs with tuneable melting points and high thermal conductivity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2011.03.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2011-07, Vol.85 (7), p.1440-1446
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_miscellaneous_874191167
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer simulation
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Energy balance
Energy. Thermal use of fuels
Equipments, installations and applications
Exact sciences and technology
Heat conductivity
Miscellaneous
Natural energy
Phase change material
Phase change materials
Photoelectric conversion
Photovoltaic
Photovoltaic cells
Photovoltaic conversion
Simulation
Solar cells
Solar energy
Solar thermal
Temperature
Thermal conductivity
Thermal properties
Transport and storage of energy
Waste heat
title Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20balance%20model%20of%20combined%20photovoltaic%20solar-thermal%20system%20incorporating%20phase%20change%20material&rft.jtitle=Solar%20energy&rft.au=Malvi,%20C.S.&rft.date=2011-07-01&rft.volume=85&rft.issue=7&rft.spage=1440&rft.epage=1446&rft.pages=1440-1446&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2011.03.027&rft_dat=%3Cproquest_cross%3E2398474231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876290519&rft_id=info:pmid/&rft_els_id=S0038092X11001101&rfr_iscdi=true