A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges

Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-06, Vol.5 (6), p.4276-4283
Hauptverfasser: Gui, Xuchun, Li, Hongbian, Zhang, Luhui, Jia, Yi, Liu, Li, Li, Zhen, Wei, Jinquan, Wang, Kunlin, Zhu, Hongwei, Tang, Zikang, Wu, Dehai, Cao, Anyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4283
container_issue 6
container_start_page 4276
container_title ACS nano
container_volume 5
creator Gui, Xuchun
Li, Hongbian
Zhang, Luhui
Jia, Yi
Liu, Li
Li, Zhen
Wei, Jinquan
Wang, Kunlin
Zhu, Hongwei
Tang, Zikang
Wu, Dehai
Cao, Anyuan
description Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.
doi_str_mv 10.1021/nn201002d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874183868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>874183868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-12ba38fc583335c1aac0a523a4d30ecd037f1b5fd99592a9937e67cfbe933eca3</originalsourceid><addsrcrecordid>eNptkM9LwzAYhoMobk4P_gOSi4iHadKsbXoc0-lgqPgDvJU0_SoZbb6apML-ezs2d_L0PYfnfeF7CTnn7IaziN9aGzHOWFQekCHPRDJmMvk83HPMB-TE-xVjcSrT5JgMIh5nXLJkSHBK50qbGugrdgFoQLrwGBy2RtMZ2rLTwfwAfVIWNTYtehPA02JN74wDHegL1usGHF3YytTBqWDQUqzoTLmip00udAXQtxbtF_hTclSp2sPZ7o7Ix_z-ffY4Xj4_LGbT5VgJycKYR0UPlY6lECLWXCnNVBwJNSkFA10ykVa8iKsyy-IsUlkmUkhSXRWQCQFaiRG52va2Dr878CFvjNdQ18oCdj6X6YRLIRPZm9dbUzv03kGVt840yq1zzvLNvPl-3t692LV2RQPl3vzbsxcut4LSPl9h52z_5D9Fv1Jcgq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874183868</pqid></control><display><type>article</type><title>A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges</title><source>ACS Publications</source><source>MEDLINE</source><creator>Gui, Xuchun ; Li, Hongbian ; Zhang, Luhui ; Jia, Yi ; Liu, Li ; Li, Zhen ; Wei, Jinquan ; Wang, Kunlin ; Zhu, Hongwei ; Tang, Zikang ; Wu, Dehai ; Cao, Anyuan</creator><creatorcontrib>Gui, Xuchun ; Li, Hongbian ; Zhang, Luhui ; Jia, Yi ; Liu, Li ; Li, Zhen ; Wei, Jinquan ; Wang, Kunlin ; Zhu, Hongwei ; Tang, Zikang ; Wu, Dehai ; Cao, Anyuan</creatorcontrib><description>Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn201002d</identifier><identifier>PMID: 21591806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrochemistry - methods ; Models, Statistical ; Nanocomposites - chemistry ; Nanotechnology - methods ; Nanotubes, Carbon - chemistry ; Plastics - chemistry ; Polymers - chemistry ; Tensile Strength</subject><ispartof>ACS nano, 2011-06, Vol.5 (6), p.4276-4283</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-12ba38fc583335c1aac0a523a4d30ecd037f1b5fd99592a9937e67cfbe933eca3</citedby><cites>FETCH-LOGICAL-a380t-12ba38fc583335c1aac0a523a4d30ecd037f1b5fd99592a9937e67cfbe933eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn201002d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn201002d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21591806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gui, Xuchun</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Zhang, Luhui</creatorcontrib><creatorcontrib>Jia, Yi</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Wang, Kunlin</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Tang, Zikang</creatorcontrib><creatorcontrib>Wu, Dehai</creatorcontrib><creatorcontrib>Cao, Anyuan</creatorcontrib><title>A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.</description><subject>Electrochemistry - methods</subject><subject>Models, Statistical</subject><subject>Nanocomposites - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Plastics - chemistry</subject><subject>Polymers - chemistry</subject><subject>Tensile Strength</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM9LwzAYhoMobk4P_gOSi4iHadKsbXoc0-lgqPgDvJU0_SoZbb6apML-ezs2d_L0PYfnfeF7CTnn7IaziN9aGzHOWFQekCHPRDJmMvk83HPMB-TE-xVjcSrT5JgMIh5nXLJkSHBK50qbGugrdgFoQLrwGBy2RtMZ2rLTwfwAfVIWNTYtehPA02JN74wDHegL1usGHF3YytTBqWDQUqzoTLmip00udAXQtxbtF_hTclSp2sPZ7o7Ix_z-ffY4Xj4_LGbT5VgJycKYR0UPlY6lECLWXCnNVBwJNSkFA10ykVa8iKsyy-IsUlkmUkhSXRWQCQFaiRG52va2Dr878CFvjNdQ18oCdj6X6YRLIRPZm9dbUzv03kGVt840yq1zzvLNvPl-3t692LV2RQPl3vzbsxcut4LSPl9h52z_5D9Fv1Jcgq4</recordid><startdate>20110628</startdate><enddate>20110628</enddate><creator>Gui, Xuchun</creator><creator>Li, Hongbian</creator><creator>Zhang, Luhui</creator><creator>Jia, Yi</creator><creator>Liu, Li</creator><creator>Li, Zhen</creator><creator>Wei, Jinquan</creator><creator>Wang, Kunlin</creator><creator>Zhu, Hongwei</creator><creator>Tang, Zikang</creator><creator>Wu, Dehai</creator><creator>Cao, Anyuan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110628</creationdate><title>A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges</title><author>Gui, Xuchun ; Li, Hongbian ; Zhang, Luhui ; Jia, Yi ; Liu, Li ; Li, Zhen ; Wei, Jinquan ; Wang, Kunlin ; Zhu, Hongwei ; Tang, Zikang ; Wu, Dehai ; Cao, Anyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-12ba38fc583335c1aac0a523a4d30ecd037f1b5fd99592a9937e67cfbe933eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrochemistry - methods</topic><topic>Models, Statistical</topic><topic>Nanocomposites - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Plastics - chemistry</topic><topic>Polymers - chemistry</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Xuchun</creatorcontrib><creatorcontrib>Li, Hongbian</creatorcontrib><creatorcontrib>Zhang, Luhui</creatorcontrib><creatorcontrib>Jia, Yi</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Wei, Jinquan</creatorcontrib><creatorcontrib>Wang, Kunlin</creatorcontrib><creatorcontrib>Zhu, Hongwei</creatorcontrib><creatorcontrib>Tang, Zikang</creatorcontrib><creatorcontrib>Wu, Dehai</creatorcontrib><creatorcontrib>Cao, Anyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Xuchun</au><au>Li, Hongbian</au><au>Zhang, Luhui</au><au>Jia, Yi</au><au>Liu, Li</au><au>Li, Zhen</au><au>Wei, Jinquan</au><au>Wang, Kunlin</au><au>Zhu, Hongwei</au><au>Tang, Zikang</au><au>Wu, Dehai</au><au>Cao, Anyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2011-06-28</date><risdate>2011</risdate><volume>5</volume><issue>6</issue><spage>4276</spage><epage>4283</epage><pages>4276-4283</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Fabrication of high-performance nanocomposites requires that the nanoscale fillers be dispersed uniformly and form a continuous network throughout the matrix. Direct infiltration of porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, we fabricated CNT sponge nanocomposites by directly infiltrating epoxy fluid into the CNT framework while maintaining the original network structure and CNT contact, with simultaneous improvement in mechanical and electrical properties. The resulting composites have an isotropic structure with electrical resistivities of 10 to 30 Ω·cm along arbitrary directions, much higher than traditional composites by mixing random CNTs with epoxy matrix. We observed reversible resistance change in the sponge composites under compression at modest strains, which can be explained by tunneling conduction model, suggesting potential applications in electromechanical sensors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21591806</pmid><doi>10.1021/nn201002d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2011-06, Vol.5 (6), p.4276-4283
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_874183868
source ACS Publications; MEDLINE
subjects Electrochemistry - methods
Models, Statistical
Nanocomposites - chemistry
Nanotechnology - methods
Nanotubes, Carbon - chemistry
Plastics - chemistry
Polymers - chemistry
Tensile Strength
title A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Facile%20Route%20to%20Isotropic%20Conductive%20Nanocomposites%20by%20Direct%20Polymer%20Infiltration%20of%20Carbon%20Nanotube%20Sponges&rft.jtitle=ACS%20nano&rft.au=Gui,%20Xuchun&rft.date=2011-06-28&rft.volume=5&rft.issue=6&rft.spage=4276&rft.epage=4283&rft.pages=4276-4283&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn201002d&rft_dat=%3Cproquest_cross%3E874183868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874183868&rft_id=info:pmid/21591806&rfr_iscdi=true