A matrix-based VaR model for risk identification in power supply networks

This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2011-09, Vol.35 (9), p.4567-4574
1. Verfasser: Chang, Chen-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4574
container_issue 9
container_start_page 4567
container_title Applied mathematical modelling
container_volume 35
creator Chang, Chen-Sung
description This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.
doi_str_mv 10.1016/j.apm.2011.03.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874181086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11001685</els_id><sourcerecordid>874181086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhntQ8PMHeMtFPHWdtGmT4mlZ_FgQBFHxFqbpFLK2TU26rv57s-ziURgYZnjfZ5g3SS44zDjw8no1w7GfZcD5DPJY2UFyDDnItALxfpSchLACgCJOx8lyznqcvP1OawzUsDd8Zr1rqGOt88zb8MFsQ8NkW2twsm5gdmCj25BnYT2O3Q8baNo4_xHOksMWu0Dn-36avN7dviwe0sen--Vi_pgaAdmUVqqVAlFUUlZ5XmFZqExyyAqBtTFU1grbWsS9LMHkolSkoKpUXWBRCJlDfppc7bijd59rCpPubTDUdTiQWwetpOCKgyqjku-UxrsQPLV69LZH_6M56G1SeqVjUnqblIY8VhY9l3s6BoNd63EwNvwZM5FFstyyb3Y6iq9-WfI6GEuDocZ6MpNunP3nyi-fPH7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874181086</pqid></control><display><type>article</type><title>A matrix-based VaR model for risk identification in power supply networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Chang, Chen-Sung</creator><creatorcontrib>Chang, Chen-Sung</creatorcontrib><description>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.03.032</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Decision theory. Utility theory ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Power networks and lines ; Risk identification ; Risk management ; Risk theory. Actuarial science ; Singular value decomposition ; Sparsity matrix ; Value-at-risk</subject><ispartof>Applied mathematical modelling, 2011-09, Vol.35 (9), p.4567-4574</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</citedby><cites>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2011.03.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24208676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chen-Sung</creatorcontrib><title>A matrix-based VaR model for risk identification in power supply networks</title><title>Applied mathematical modelling</title><description>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</description><subject>Applied sciences</subject><subject>Decision theory. Utility theory</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Power networks and lines</subject><subject>Risk identification</subject><subject>Risk management</subject><subject>Risk theory. Actuarial science</subject><subject>Singular value decomposition</subject><subject>Sparsity matrix</subject><subject>Value-at-risk</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhntQ8PMHeMtFPHWdtGmT4mlZ_FgQBFHxFqbpFLK2TU26rv57s-ziURgYZnjfZ5g3SS44zDjw8no1w7GfZcD5DPJY2UFyDDnItALxfpSchLACgCJOx8lyznqcvP1OawzUsDd8Zr1rqGOt88zb8MFsQ8NkW2twsm5gdmCj25BnYT2O3Q8baNo4_xHOksMWu0Dn-36avN7dviwe0sen--Vi_pgaAdmUVqqVAlFUUlZ5XmFZqExyyAqBtTFU1grbWsS9LMHkolSkoKpUXWBRCJlDfppc7bijd59rCpPubTDUdTiQWwetpOCKgyqjku-UxrsQPLV69LZH_6M56G1SeqVjUnqblIY8VhY9l3s6BoNd63EwNvwZM5FFstyyb3Y6iq9-WfI6GEuDocZ6MpNunP3nyi-fPH7q</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Chang, Chen-Sung</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>A matrix-based VaR model for risk identification in power supply networks</title><author>Chang, Chen-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Decision theory. Utility theory</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Power networks and lines</topic><topic>Risk identification</topic><topic>Risk management</topic><topic>Risk theory. Actuarial science</topic><topic>Singular value decomposition</topic><topic>Sparsity matrix</topic><topic>Value-at-risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chen-Sung</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chen-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-based VaR model for risk identification in power supply networks</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>35</volume><issue>9</issue><spage>4567</spage><epage>4574</epage><pages>4567-4574</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.03.032</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2011-09, Vol.35 (9), p.4567-4574
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_874181086
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Applied sciences
Decision theory. Utility theory
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
Operational research and scientific management
Operational research. Management science
Portfolio theory
Power networks and lines
Risk identification
Risk management
Risk theory. Actuarial science
Singular value decomposition
Sparsity matrix
Value-at-risk
title A matrix-based VaR model for risk identification in power supply networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-based%20VaR%20model%20for%20risk%20identification%20in%20power%20supply%20networks&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Chang,%20Chen-Sung&rft.date=2011-09-01&rft.volume=35&rft.issue=9&rft.spage=4567&rft.epage=4574&rft.pages=4567-4574&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.03.032&rft_dat=%3Cproquest_cross%3E874181086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874181086&rft_id=info:pmid/&rft_els_id=S0307904X11001685&rfr_iscdi=true