A matrix-based VaR model for risk identification in power supply networks
This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as prob...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2011-09, Vol.35 (9), p.4567-4574 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4574 |
---|---|
container_issue | 9 |
container_start_page | 4567 |
container_title | Applied mathematical modelling |
container_volume | 35 |
creator | Chang, Chen-Sung |
description | This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks. |
doi_str_mv | 10.1016/j.apm.2011.03.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_874181086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11001685</els_id><sourcerecordid>874181086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhntQ8PMHeMtFPHWdtGmT4mlZ_FgQBFHxFqbpFLK2TU26rv57s-ziURgYZnjfZ5g3SS44zDjw8no1w7GfZcD5DPJY2UFyDDnItALxfpSchLACgCJOx8lyznqcvP1OawzUsDd8Zr1rqGOt88zb8MFsQ8NkW2twsm5gdmCj25BnYT2O3Q8baNo4_xHOksMWu0Dn-36avN7dviwe0sen--Vi_pgaAdmUVqqVAlFUUlZ5XmFZqExyyAqBtTFU1grbWsS9LMHkolSkoKpUXWBRCJlDfppc7bijd59rCpPubTDUdTiQWwetpOCKgyqjku-UxrsQPLV69LZH_6M56G1SeqVjUnqblIY8VhY9l3s6BoNd63EwNvwZM5FFstyyb3Y6iq9-WfI6GEuDocZ6MpNunP3nyi-fPH7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874181086</pqid></control><display><type>article</type><title>A matrix-based VaR model for risk identification in power supply networks</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Chang, Chen-Sung</creator><creatorcontrib>Chang, Chen-Sung</creatorcontrib><description>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.03.032</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Decision theory. Utility theory ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Power networks and lines ; Risk identification ; Risk management ; Risk theory. Actuarial science ; Singular value decomposition ; Sparsity matrix ; Value-at-risk</subject><ispartof>Applied mathematical modelling, 2011-09, Vol.35 (9), p.4567-4574</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</citedby><cites>FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2011.03.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24208676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chen-Sung</creatorcontrib><title>A matrix-based VaR model for risk identification in power supply networks</title><title>Applied mathematical modelling</title><description>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</description><subject>Applied sciences</subject><subject>Decision theory. Utility theory</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Power networks and lines</subject><subject>Risk identification</subject><subject>Risk management</subject><subject>Risk theory. Actuarial science</subject><subject>Singular value decomposition</subject><subject>Sparsity matrix</subject><subject>Value-at-risk</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhntQ8PMHeMtFPHWdtGmT4mlZ_FgQBFHxFqbpFLK2TU26rv57s-ziURgYZnjfZ5g3SS44zDjw8no1w7GfZcD5DPJY2UFyDDnItALxfpSchLACgCJOx8lyznqcvP1OawzUsDd8Zr1rqGOt88zb8MFsQ8NkW2twsm5gdmCj25BnYT2O3Q8baNo4_xHOksMWu0Dn-36avN7dviwe0sen--Vi_pgaAdmUVqqVAlFUUlZ5XmFZqExyyAqBtTFU1grbWsS9LMHkolSkoKpUXWBRCJlDfppc7bijd59rCpPubTDUdTiQWwetpOCKgyqjku-UxrsQPLV69LZH_6M56G1SeqVjUnqblIY8VhY9l3s6BoNd63EwNvwZM5FFstyyb3Y6iq9-WfI6GEuDocZ6MpNunP3nyi-fPH7q</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Chang, Chen-Sung</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>A matrix-based VaR model for risk identification in power supply networks</title><author>Chang, Chen-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-98f74aa49779339a6582710254abcce6b8afb49a6760c3468e80998b5a5547303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Decision theory. Utility theory</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Power networks and lines</topic><topic>Risk identification</topic><topic>Risk management</topic><topic>Risk theory. Actuarial science</topic><topic>Singular value decomposition</topic><topic>Sparsity matrix</topic><topic>Value-at-risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chen-Sung</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chen-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-based VaR model for risk identification in power supply networks</atitle><jtitle>Applied mathematical modelling</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>35</volume><issue>9</issue><spage>4567</spage><epage>4574</epage><pages>4567-4574</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper presents a value-at-risk (VaR) model based on the singular value decomposition (SVD) of a sparsity matrix for voltage risk identification in power supply networks. The matrix-based model provides a more computationally efficient risk assessment method than conventional models such as probability analysis and sensitivity analysis, for example, and provides decision makers in the power supply industry with sufficient information to minimize the risk of network collapse or blackouts. The VaR model is incorporated into a risk identification system (RIS) programmed in the MATLAB environment. The feasibility of the proposed approach is confirmed by performing a series of risk assessment simulations using the standard American Electric Power (AEP) test models (i.e. 14-, 30- and 57-node networks) and a real-world power network (Taiwan power network), respectively. In general, the simulated results confirm the ability of the matrix-based model VaR model to efficient identify risk of power supply networks.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.03.032</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2011-09, Vol.35 (9), p.4567-4574 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_874181086 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Applied sciences Decision theory. Utility theory Electrical engineering. Electrical power engineering Electrical power engineering Exact sciences and technology Operational research and scientific management Operational research. Management science Portfolio theory Power networks and lines Risk identification Risk management Risk theory. Actuarial science Singular value decomposition Sparsity matrix Value-at-risk |
title | A matrix-based VaR model for risk identification in power supply networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-based%20VaR%20model%20for%20risk%20identification%20in%20power%20supply%20networks&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Chang,%20Chen-Sung&rft.date=2011-09-01&rft.volume=35&rft.issue=9&rft.spage=4567&rft.epage=4574&rft.pages=4567-4574&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2011.03.032&rft_dat=%3Cproquest_cross%3E874181086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874181086&rft_id=info:pmid/&rft_els_id=S0307904X11001685&rfr_iscdi=true |