Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations

Hepatitis C virus helicase is a molecular motor that splits duplex DNA while actively moving over it. An approximate coarse-grained dynamical description of this protein, including its interactions with DNA and ATP, is constructed. Using such a mechanical model, entire operation cycles of an importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-12, Vol.107 (49), p.20875-20880
Hauptverfasser: Flechsig, Holger, Mikhailov, Alexander S., Ertl, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20880
container_issue 49
container_start_page 20875
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Flechsig, Holger
Mikhailov, Alexander S.
Ertl, Gerhard
description Hepatitis C virus helicase is a molecular motor that splits duplex DNA while actively moving over it. An approximate coarse-grained dynamical description of this protein, including its interactions with DNA and ATP, is constructed. Using such a mechanical model, entire operation cycles of an important protein machine could be followed in structurally resolved dynamical simulations. Ratcheting inchworm translocation and spring-loaded DNA unwinding, suggested by experimental data, were reproduced. Thus, feasibility of coarse-grained simulations, bridging a gap between full molecular dynamics and reduced phenomenological theories of molecular motors, has been demonstrated.
doi_str_mv 10.1073/pnas.1014631107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_874180501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25756800</jstor_id><sourcerecordid>25756800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-6e764a8beb65a2eb14301e5a845e163fc9ccccea23e539d218d8680238eb3573</originalsourceid><addsrcrecordid>eNqFkkuP0zAUhSMEYsrAmhXIYsOqjB3Hrw0SqnhJI7Hp3nKc2xlXThzspFIlfjw3apkCm_HGlv3dY_vcU1WvGf3AqOI34-AKrlgjOcONJ9WKUcPWsjH0abWitFZr3dTNVfWilD2l1AhNn1dXNaOaSaNW1a9tdj4MdwSGKWQgaYTsppAG4o8-QiFpR_oUwc_RZVxNKZN7GBGZQiEbcgh5LrgTg3cFSBhImfLspzm7GI8kQ0nxAB3pjoPrkYmkhB61livKy-rZzsUCr87zdbX98nm7-ba-_fH1--bT7doLI6e1BCUbp1topXA1tKzhlIFwuhHAJN9543GAqzkIbrqa6U5LTWuuoeVC8evq40l2nNseOo9fxdfZMYfe5aNNLth_T4Zwb-_SwXJ0rDYCBd6fBXL6OUOZbB-KhxjdAGkuVquGaSooe5zEzoiaCfM4yaQynBmN5Lv_yH2a84CGIaTQACMlQjcnyOdUSobdw_cYtUtU7BIVe4kKVrz925UH_k82ECBnYKm8yCnbGFtTrRZj3pyQfcFgXCSEEtgAyn8DDq_Rew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817163966</pqid></control><display><type>article</type><title>Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Flechsig, Holger ; Mikhailov, Alexander S. ; Ertl, Gerhard</creator><creatorcontrib>Flechsig, Holger ; Mikhailov, Alexander S. ; Ertl, Gerhard</creatorcontrib><description>Hepatitis C virus helicase is a molecular motor that splits duplex DNA while actively moving over it. An approximate coarse-grained dynamical description of this protein, including its interactions with DNA and ATP, is constructed. Using such a mechanical model, entire operation cycles of an important protein machine could be followed in structurally resolved dynamical simulations. Ratcheting inchworm translocation and spring-loaded DNA unwinding, suggested by experimental data, were reproduced. Thus, feasibility of coarse-grained simulations, bridging a gap between full molecular dynamics and reduced phenomenological theories of molecular motors, has been demonstrated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1014631107</identifier><identifier>PMID: 21081697</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; ATP ; Biological Sciences ; Computer Simulation ; Data processing ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Helicases - physiology ; Genetic equilibrium ; Hepacivirus ; Hepacivirus - chemistry ; Hepatitis ; Hepatitis C ; Hepatitis C virus ; Hydrolysis ; Kinetics ; Ligands ; Molecular Dynamics Simulation ; Molecular Motor Proteins - physiology ; Motors ; Movement ; Particle interactions ; Physical Sciences ; Polymers ; Proteins ; Simulation ; Trajectories ; Translocation ; Unwinding ; Viral Nonstructural Proteins - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (49), p.20875-20880</ispartof><rights>Copyright National Academy of Sciences Dec 7, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-6e764a8beb65a2eb14301e5a845e163fc9ccccea23e539d218d8680238eb3573</citedby><cites>FETCH-LOGICAL-c596t-6e764a8beb65a2eb14301e5a845e163fc9ccccea23e539d218d8680238eb3573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25756800$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25756800$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21081697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flechsig, Holger</creatorcontrib><creatorcontrib>Mikhailov, Alexander S.</creatorcontrib><creatorcontrib>Ertl, Gerhard</creatorcontrib><title>Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Hepatitis C virus helicase is a molecular motor that splits duplex DNA while actively moving over it. An approximate coarse-grained dynamical description of this protein, including its interactions with DNA and ATP, is constructed. Using such a mechanical model, entire operation cycles of an important protein machine could be followed in structurally resolved dynamical simulations. Ratcheting inchworm translocation and spring-loaded DNA unwinding, suggested by experimental data, were reproduced. Thus, feasibility of coarse-grained simulations, bridging a gap between full molecular dynamics and reduced phenomenological theories of molecular motors, has been demonstrated.</description><subject>Adenosine triphosphatase</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Helicases - physiology</subject><subject>Genetic equilibrium</subject><subject>Hepacivirus</subject><subject>Hepacivirus - chemistry</subject><subject>Hepatitis</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Motor Proteins - physiology</subject><subject>Motors</subject><subject>Movement</subject><subject>Particle interactions</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Trajectories</subject><subject>Translocation</subject><subject>Unwinding</subject><subject>Viral Nonstructural Proteins - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuP0zAUhSMEYsrAmhXIYsOqjB3Hrw0SqnhJI7Hp3nKc2xlXThzspFIlfjw3apkCm_HGlv3dY_vcU1WvGf3AqOI34-AKrlgjOcONJ9WKUcPWsjH0abWitFZr3dTNVfWilD2l1AhNn1dXNaOaSaNW1a9tdj4MdwSGKWQgaYTsppAG4o8-QiFpR_oUwc_RZVxNKZN7GBGZQiEbcgh5LrgTg3cFSBhImfLspzm7GI8kQ0nxAB3pjoPrkYmkhB61livKy-rZzsUCr87zdbX98nm7-ba-_fH1--bT7doLI6e1BCUbp1topXA1tKzhlIFwuhHAJN9543GAqzkIbrqa6U5LTWuuoeVC8evq40l2nNseOo9fxdfZMYfe5aNNLth_T4Zwb-_SwXJ0rDYCBd6fBXL6OUOZbB-KhxjdAGkuVquGaSooe5zEzoiaCfM4yaQynBmN5Lv_yH2a84CGIaTQACMlQjcnyOdUSobdw_cYtUtU7BIVe4kKVrz925UH_k82ECBnYKm8yCnbGFtTrRZj3pyQfcFgXCSEEtgAyn8DDq_Rew</recordid><startdate>20101207</startdate><enddate>20101207</enddate><creator>Flechsig, Holger</creator><creator>Mikhailov, Alexander S.</creator><creator>Ertl, Gerhard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101207</creationdate><title>Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations</title><author>Flechsig, Holger ; Mikhailov, Alexander S. ; Ertl, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-6e764a8beb65a2eb14301e5a845e163fc9ccccea23e539d218d8680238eb3573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine triphosphatase</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Helicases - physiology</topic><topic>Genetic equilibrium</topic><topic>Hepacivirus</topic><topic>Hepacivirus - chemistry</topic><topic>Hepatitis</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Motor Proteins - physiology</topic><topic>Motors</topic><topic>Movement</topic><topic>Particle interactions</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Trajectories</topic><topic>Translocation</topic><topic>Unwinding</topic><topic>Viral Nonstructural Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flechsig, Holger</creatorcontrib><creatorcontrib>Mikhailov, Alexander S.</creatorcontrib><creatorcontrib>Ertl, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flechsig, Holger</au><au>Mikhailov, Alexander S.</au><au>Ertl, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-12-07</date><risdate>2010</risdate><volume>107</volume><issue>49</issue><spage>20875</spage><epage>20880</epage><pages>20875-20880</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Hepatitis C virus helicase is a molecular motor that splits duplex DNA while actively moving over it. An approximate coarse-grained dynamical description of this protein, including its interactions with DNA and ATP, is constructed. Using such a mechanical model, entire operation cycles of an important protein machine could be followed in structurally resolved dynamical simulations. Ratcheting inchworm translocation and spring-loaded DNA unwinding, suggested by experimental data, were reproduced. Thus, feasibility of coarse-grained simulations, bridging a gap between full molecular dynamics and reduced phenomenological theories of molecular motors, has been demonstrated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21081697</pmid><doi>10.1073/pnas.1014631107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (49), p.20875-20880
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_874180501
source MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR
subjects Adenosine triphosphatase
ATP
Biological Sciences
Computer Simulation
Data processing
Deoxyribonucleic acid
DNA
DNA helicase
DNA Helicases - physiology
Genetic equilibrium
Hepacivirus
Hepacivirus - chemistry
Hepatitis
Hepatitis C
Hepatitis C virus
Hydrolysis
Kinetics
Ligands
Molecular Dynamics Simulation
Molecular Motor Proteins - physiology
Motors
Movement
Particle interactions
Physical Sciences
Polymers
Proteins
Simulation
Trajectories
Translocation
Unwinding
Viral Nonstructural Proteins - physiology
title Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20entire%20operation%20cycles%20of%20molecular%20motor%20hepatitis%20C%20virus%20helicase%20in%20structurally%20resolved%20dynamical%20simulations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Flechsig,%20Holger&rft.date=2010-12-07&rft.volume=107&rft.issue=49&rft.spage=20875&rft.epage=20880&rft.pages=20875-20880&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1014631107&rft_dat=%3Cjstor_proqu%3E25756800%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817163966&rft_id=info:pmid/21081697&rft_jstor_id=25756800&rfr_iscdi=true