Design analysis of miniature quartz resonator using two-dimensional finite element model

This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154
Hauptverfasser: HUANG, Zi-Gui, CHEN, Zheng-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1154
container_issue 6
container_start_page 1145
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator HUANG, Zi-Gui
CHEN, Zheng-Yu
description This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.
doi_str_mv 10.1109/TUFFC.2011.1924
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_873495853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5895028</ieee_id><sourcerecordid>896172350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUwPEgil2rZw-CBKF4mm1eMvl1lLWrQsFLC96GbOalpMxM2mQGqX-92e5awYunwMvnBcKXkLfA1gDMnl9db7ebNWcAa7C8fUZWILlsjJXyOVkxY2QjGLAT8qqUW8agbS1_SU44KCuEVSvy4zOWeDNRN7nhocRCU6BjnKKbl4z0fnF5_kUzljS5OWW6lDjd0Plnavo44lRinQ801IUZKQ5YZzMdU4_Da_IiuKHgm-N5Sq63F1ebr83l9y_fNp8uG98yOTfBqV2vlGAiWA1McMOd7jWoEEQLQaDurWHotAXrPWiv0RkFeufVjlnZi1Py8fDuXU73C5a5G2PxOAxuwrSUztiquZDs_1KL1kojRZUf_pG3acn1p48IgFvJKzo_IJ9TKRlDd5fj6PJDB6zbx-ke43T7ON0-Tt14f3x22Y3YP_k_NSo4OwJXvBtCdpOP5a9ruZKc2-reHVxExKdrWaszbsRv_eWf0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873112952</pqid></control><display><type>article</type><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><source>IEEE Xplore</source><creator>HUANG, Zi-Gui ; CHEN, Zheng-Yu</creator><creatorcontrib>HUANG, Zi-Gui ; CHEN, Zheng-Yu</creatorcontrib><description>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.1924</identifier><identifier>PMID: 21693396</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Acoustics ; Applied sciences ; Boundary conditions ; Electrodes ; Electronics ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Finite element methods ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Miniature ; Physics ; Plates ; Quartz ; Resonant frequencies ; Resonant frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid modeling ; Strain ; Transduction; acoustical devices for the generation and reproduction of sound ; Vibrations</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</citedby><cites>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5895028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5895028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24265229$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21693396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HUANG, Zi-Gui</creatorcontrib><creatorcontrib>CHEN, Zheng-Yu</creatorcontrib><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miniature</subject><subject>Physics</subject><subject>Plates</subject><subject>Quartz</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid modeling</subject><subject>Strain</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Vibrations</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9rFDEUwPEgil2rZw-CBKF4mm1eMvl1lLWrQsFLC96GbOalpMxM2mQGqX-92e5awYunwMvnBcKXkLfA1gDMnl9db7ebNWcAa7C8fUZWILlsjJXyOVkxY2QjGLAT8qqUW8agbS1_SU44KCuEVSvy4zOWeDNRN7nhocRCU6BjnKKbl4z0fnF5_kUzljS5OWW6lDjd0Plnavo44lRinQ801IUZKQ5YZzMdU4_Da_IiuKHgm-N5Sq63F1ebr83l9y_fNp8uG98yOTfBqV2vlGAiWA1McMOd7jWoEEQLQaDurWHotAXrPWiv0RkFeufVjlnZi1Py8fDuXU73C5a5G2PxOAxuwrSUztiquZDs_1KL1kojRZUf_pG3acn1p48IgFvJKzo_IJ9TKRlDd5fj6PJDB6zbx-ke43T7ON0-Tt14f3x22Y3YP_k_NSo4OwJXvBtCdpOP5a9ruZKc2-reHVxExKdrWaszbsRv_eWf0A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>HUANG, Zi-Gui</creator><creator>CHEN, Zheng-Yu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><author>HUANG, Zi-Gui ; CHEN, Zheng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miniature</topic><topic>Physics</topic><topic>Plates</topic><topic>Quartz</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid modeling</topic><topic>Strain</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, Zi-Gui</creatorcontrib><creatorcontrib>CHEN, Zheng-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG, Zi-Gui</au><au>CHEN, Zheng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design analysis of miniature quartz resonator using two-dimensional finite element model</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>1145</spage><epage>1154</epage><pages>1145-1154</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21693396</pmid><doi>10.1109/TUFFC.2011.1924</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_873495853
source IEEE Xplore
subjects Acoustic wave devices, piezoelectric and piezoresistive devices
Acoustics
Applied sciences
Boundary conditions
Electrodes
Electronics
Exact sciences and technology
Finite element analysis
Finite element method
Finite element methods
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Miniature
Physics
Plates
Quartz
Resonant frequencies
Resonant frequency
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid modeling
Strain
Transduction
acoustical devices for the generation and reproduction of sound
Vibrations
title Design analysis of miniature quartz resonator using two-dimensional finite element model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20analysis%20of%20miniature%20quartz%20resonator%20using%20two-dimensional%20finite%20element%20model&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=HUANG,%20Zi-Gui&rft.date=2011-06-01&rft.volume=58&rft.issue=6&rft.spage=1145&rft.epage=1154&rft.pages=1145-1154&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.1924&rft_dat=%3Cproquest_RIE%3E896172350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873112952&rft_id=info:pmid/21693396&rft_ieee_id=5895028&rfr_iscdi=true