Design analysis of miniature quartz resonator using two-dimensional finite element model
This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1154 |
---|---|
container_issue | 6 |
container_start_page | 1145 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 58 |
creator | HUANG, Zi-Gui CHEN, Zheng-Yu |
description | This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates. |
doi_str_mv | 10.1109/TUFFC.2011.1924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_873495853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5895028</ieee_id><sourcerecordid>896172350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</originalsourceid><addsrcrecordid>eNqF0c9rFDEUwPEgil2rZw-CBKF4mm1eMvl1lLWrQsFLC96GbOalpMxM2mQGqX-92e5awYunwMvnBcKXkLfA1gDMnl9db7ebNWcAa7C8fUZWILlsjJXyOVkxY2QjGLAT8qqUW8agbS1_SU44KCuEVSvy4zOWeDNRN7nhocRCU6BjnKKbl4z0fnF5_kUzljS5OWW6lDjd0Plnavo44lRinQ801IUZKQ5YZzMdU4_Da_IiuKHgm-N5Sq63F1ebr83l9y_fNp8uG98yOTfBqV2vlGAiWA1McMOd7jWoEEQLQaDurWHotAXrPWiv0RkFeufVjlnZi1Py8fDuXU73C5a5G2PxOAxuwrSUztiquZDs_1KL1kojRZUf_pG3acn1p48IgFvJKzo_IJ9TKRlDd5fj6PJDB6zbx-ke43T7ON0-Tt14f3x22Y3YP_k_NSo4OwJXvBtCdpOP5a9ruZKc2-reHVxExKdrWaszbsRv_eWf0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873112952</pqid></control><display><type>article</type><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><source>IEEE Xplore</source><creator>HUANG, Zi-Gui ; CHEN, Zheng-Yu</creator><creatorcontrib>HUANG, Zi-Gui ; CHEN, Zheng-Yu</creatorcontrib><description>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.1924</identifier><identifier>PMID: 21693396</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Acoustics ; Applied sciences ; Boundary conditions ; Electrodes ; Electronics ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Finite element methods ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Miniature ; Physics ; Plates ; Quartz ; Resonant frequencies ; Resonant frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid modeling ; Strain ; Transduction; acoustical devices for the generation and reproduction of sound ; Vibrations</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</citedby><cites>FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5895028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5895028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24265229$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21693396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HUANG, Zi-Gui</creatorcontrib><creatorcontrib>CHEN, Zheng-Yu</creatorcontrib><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Acoustics</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miniature</subject><subject>Physics</subject><subject>Plates</subject><subject>Quartz</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid modeling</subject><subject>Strain</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Vibrations</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9rFDEUwPEgil2rZw-CBKF4mm1eMvl1lLWrQsFLC96GbOalpMxM2mQGqX-92e5awYunwMvnBcKXkLfA1gDMnl9db7ebNWcAa7C8fUZWILlsjJXyOVkxY2QjGLAT8qqUW8agbS1_SU44KCuEVSvy4zOWeDNRN7nhocRCU6BjnKKbl4z0fnF5_kUzljS5OWW6lDjd0Plnavo44lRinQ801IUZKQ5YZzMdU4_Da_IiuKHgm-N5Sq63F1ebr83l9y_fNp8uG98yOTfBqV2vlGAiWA1McMOd7jWoEEQLQaDurWHotAXrPWiv0RkFeufVjlnZi1Py8fDuXU73C5a5G2PxOAxuwrSUztiquZDs_1KL1kojRZUf_pG3acn1p48IgFvJKzo_IJ9TKRlDd5fj6PJDB6zbx-ke43T7ON0-Tt14f3x22Y3YP_k_NSo4OwJXvBtCdpOP5a9ruZKc2-reHVxExKdrWaszbsRv_eWf0A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>HUANG, Zi-Gui</creator><creator>CHEN, Zheng-Yu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>Design analysis of miniature quartz resonator using two-dimensional finite element model</title><author>HUANG, Zi-Gui ; CHEN, Zheng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fa6bd66303f97103282a7d716ff341f3e7d980ea7919cc17c7ea8617bc6b095d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Acoustics</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miniature</topic><topic>Physics</topic><topic>Plates</topic><topic>Quartz</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid modeling</topic><topic>Strain</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, Zi-Gui</creatorcontrib><creatorcontrib>CHEN, Zheng-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG, Zi-Gui</au><au>CHEN, Zheng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design analysis of miniature quartz resonator using two-dimensional finite element model</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>1145</spage><epage>1154</epage><pages>1145-1154</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This study focused on 2-D miniature quartz plates. By assigning appropriate boundary condition using finite element modeling (FEM), the vibration of a quartz plate was analyzed for converse piezoelectric effect. The quality and stability of the resonance of a quartz plate was determined by examining changes on the response curve of resonant frequency when the length of plate was decreased or increased. A graphical user interface (GUI) was adopted to assist the finite element software to calculate the frequency responses with different length of a large number of quartz plates, and to conclude a detailed curve of resonant frequency versus size. With this diagram, changes of the resonant mode for quartz plates caused by length variation can be easily observed. An optimum size of the quartz plate is obtained from the curve. Moreover, analyses were also conducted on the electrode coverage of a quartz plate and the mass-loading effect of metallic electrodes for this study, to discuss the influence on the resonant frequencies of quartz plates.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21693396</pmid><doi>10.1109/TUFFC.2011.1924</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-06, Vol.58 (6), p.1145-1154 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_873495853 |
source | IEEE Xplore |
subjects | Acoustic wave devices, piezoelectric and piezoresistive devices Acoustics Applied sciences Boundary conditions Electrodes Electronics Exact sciences and technology Finite element analysis Finite element method Finite element methods Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Miniature Physics Plates Quartz Resonant frequencies Resonant frequency Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid modeling Strain Transduction acoustical devices for the generation and reproduction of sound Vibrations |
title | Design analysis of miniature quartz resonator using two-dimensional finite element model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20analysis%20of%20miniature%20quartz%20resonator%20using%20two-dimensional%20finite%20element%20model&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=HUANG,%20Zi-Gui&rft.date=2011-06-01&rft.volume=58&rft.issue=6&rft.spage=1145&rft.epage=1154&rft.pages=1145-1154&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.1924&rft_dat=%3Cproquest_RIE%3E896172350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873112952&rft_id=info:pmid/21693396&rft_ieee_id=5895028&rfr_iscdi=true |