Atomic and electronic structure of carbon strings
This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusua...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2005-06, Vol.17 (25), p.3823-3836 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3836 |
---|---|
container_issue | 25 |
container_start_page | 3823 |
container_title | Journal of physics. Condensed matter |
container_volume | 17 |
creator | Tongay, S Dag, S Durgun, E Senger, R T Ciraci, S |
description | This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties. |
doi_str_mv | 10.1088/0953-8984/17/25/009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_873317080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29896478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOo4-gSDdqCB0mltzWQ6DNxhwo-AupEkqld5M2oVvb8qM40IRV4ccvv8_5APgDMEFgkJkUOYkFVLQDPEM5xmEcg_MEGEoZVS87IPZjjgCxyG8QQipIPQQHGHEJGRSzgBaDl1TmUS3NnG1M4Pv2vgMgx_NMHqXdGVitC-6dtpV7Ws4AQelroM73c45eL69eVrdp-vHu4fVcp0aKuiQMi2lYFzGiwVC2jLurIM4zznWgkOLcmk1K6TRXGNIrcQSm9JSba121AoyB1eb3t5376MLg2qqYFxd69Z1Y1CCE4I4FDCSl3-SWArJKJ8qyQY0vgvBu1L1vmq0_1AIqsmpmoypyZhCXOFcRacxdb6tH4vG2V3mS2IELraADkbXpdetqcJ3NxPxwzSP3GLDVV3_z8vXPwO_gKq3JfkE2_eYwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29896478</pqid></control><display><type>article</type><title>Atomic and electronic structure of carbon strings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</creator><creatorcontrib>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</creatorcontrib><description>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/17/25/009</identifier><identifier>PMID: 21690699</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physics. Condensed matter, 2005-06, Vol.17 (25), p.3823-3836</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</citedby><cites>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/17/25/009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16887045$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tongay, S</creatorcontrib><creatorcontrib>Dag, S</creatorcontrib><creatorcontrib>Durgun, E</creatorcontrib><creatorcontrib>Senger, R T</creatorcontrib><creatorcontrib>Ciraci, S</creatorcontrib><title>Atomic and electronic structure of carbon strings</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKxDAUhoMoOo4-gSDdqCB0mltzWQ6DNxhwo-AupEkqld5M2oVvb8qM40IRV4ccvv8_5APgDMEFgkJkUOYkFVLQDPEM5xmEcg_MEGEoZVS87IPZjjgCxyG8QQipIPQQHGHEJGRSzgBaDl1TmUS3NnG1M4Pv2vgMgx_NMHqXdGVitC-6dtpV7Ws4AQelroM73c45eL69eVrdp-vHu4fVcp0aKuiQMi2lYFzGiwVC2jLurIM4zznWgkOLcmk1K6TRXGNIrcQSm9JSba121AoyB1eb3t5376MLg2qqYFxd69Z1Y1CCE4I4FDCSl3-SWArJKJ8qyQY0vgvBu1L1vmq0_1AIqsmpmoypyZhCXOFcRacxdb6tH4vG2V3mS2IELraADkbXpdetqcJ3NxPxwzSP3GLDVV3_z8vXPwO_gKq3JfkE2_eYwg</recordid><startdate>20050629</startdate><enddate>20050629</enddate><creator>Tongay, S</creator><creator>Dag, S</creator><creator>Durgun, E</creator><creator>Senger, R T</creator><creator>Ciraci, S</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050629</creationdate><title>Atomic and electronic structure of carbon strings</title><author>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongay, S</creatorcontrib><creatorcontrib>Dag, S</creatorcontrib><creatorcontrib>Durgun, E</creatorcontrib><creatorcontrib>Senger, R T</creatorcontrib><creatorcontrib>Ciraci, S</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tongay, S</au><au>Dag, S</au><au>Durgun, E</au><au>Senger, R T</au><au>Ciraci, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic and electronic structure of carbon strings</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2005-06-29</date><risdate>2005</risdate><volume>17</volume><issue>25</issue><spage>3823</spage><epage>3836</epage><pages>3823-3836</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21690699</pmid><doi>10.1088/0953-8984/17/25/009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2005-06, Vol.17 (25), p.3823-3836 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_873317080 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Physics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Atomic and electronic structure of carbon strings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20and%20electronic%20structure%20of%20carbon%20strings&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Tongay,%20S&rft.date=2005-06-29&rft.volume=17&rft.issue=25&rft.spage=3823&rft.epage=3836&rft.pages=3823-3836&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/17/25/009&rft_dat=%3Cproquest_pasca%3E29896478%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29896478&rft_id=info:pmid/21690699&rfr_iscdi=true |