Atomic and electronic structure of carbon strings

This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2005-06, Vol.17 (25), p.3823-3836
Hauptverfasser: Tongay, S, Dag, S, Durgun, E, Senger, R T, Ciraci, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3836
container_issue 25
container_start_page 3823
container_title Journal of physics. Condensed matter
container_volume 17
creator Tongay, S
Dag, S
Durgun, E
Senger, R T
Ciraci, S
description This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.
doi_str_mv 10.1088/0953-8984/17/25/009
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_873317080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29896478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOo4-gSDdqCB0mltzWQ6DNxhwo-AupEkqld5M2oVvb8qM40IRV4ccvv8_5APgDMEFgkJkUOYkFVLQDPEM5xmEcg_MEGEoZVS87IPZjjgCxyG8QQipIPQQHGHEJGRSzgBaDl1TmUS3NnG1M4Pv2vgMgx_NMHqXdGVitC-6dtpV7Ws4AQelroM73c45eL69eVrdp-vHu4fVcp0aKuiQMi2lYFzGiwVC2jLurIM4zznWgkOLcmk1K6TRXGNIrcQSm9JSba121AoyB1eb3t5376MLg2qqYFxd69Z1Y1CCE4I4FDCSl3-SWArJKJ8qyQY0vgvBu1L1vmq0_1AIqsmpmoypyZhCXOFcRacxdb6tH4vG2V3mS2IELraADkbXpdetqcJ3NxPxwzSP3GLDVV3_z8vXPwO_gKq3JfkE2_eYwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29896478</pqid></control><display><type>article</type><title>Atomic and electronic structure of carbon strings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</creator><creatorcontrib>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</creatorcontrib><description>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/17/25/009</identifier><identifier>PMID: 21690699</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physics. Condensed matter, 2005-06, Vol.17 (25), p.3823-3836</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</citedby><cites>FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/17/25/009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16887045$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21690699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tongay, S</creatorcontrib><creatorcontrib>Dag, S</creatorcontrib><creatorcontrib>Durgun, E</creatorcontrib><creatorcontrib>Senger, R T</creatorcontrib><creatorcontrib>Ciraci, S</creatorcontrib><title>Atomic and electronic structure of carbon strings</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKxDAUhoMoOo4-gSDdqCB0mltzWQ6DNxhwo-AupEkqld5M2oVvb8qM40IRV4ccvv8_5APgDMEFgkJkUOYkFVLQDPEM5xmEcg_MEGEoZVS87IPZjjgCxyG8QQipIPQQHGHEJGRSzgBaDl1TmUS3NnG1M4Pv2vgMgx_NMHqXdGVitC-6dtpV7Ws4AQelroM73c45eL69eVrdp-vHu4fVcp0aKuiQMi2lYFzGiwVC2jLurIM4zznWgkOLcmk1K6TRXGNIrcQSm9JSba121AoyB1eb3t5376MLg2qqYFxd69Z1Y1CCE4I4FDCSl3-SWArJKJ8qyQY0vgvBu1L1vmq0_1AIqsmpmoypyZhCXOFcRacxdb6tH4vG2V3mS2IELraADkbXpdetqcJ3NxPxwzSP3GLDVV3_z8vXPwO_gKq3JfkE2_eYwg</recordid><startdate>20050629</startdate><enddate>20050629</enddate><creator>Tongay, S</creator><creator>Dag, S</creator><creator>Durgun, E</creator><creator>Senger, R T</creator><creator>Ciraci, S</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050629</creationdate><title>Atomic and electronic structure of carbon strings</title><author>Tongay, S ; Dag, S ; Durgun, E ; Senger, R T ; Ciraci, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-6a998679483b11ad67ede025572a870d159da6b9ca7a204d9292cfd4addae4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tongay, S</creatorcontrib><creatorcontrib>Dag, S</creatorcontrib><creatorcontrib>Durgun, E</creatorcontrib><creatorcontrib>Senger, R T</creatorcontrib><creatorcontrib>Ciraci, S</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tongay, S</au><au>Dag, S</au><au>Durgun, E</au><au>Senger, R T</au><au>Ciraci, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic and electronic structure of carbon strings</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2005-06-29</date><risdate>2005</risdate><volume>17</volume><issue>25</issue><spage>3823</spage><epage>3836</epage><pages>3823-3836</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21690699</pmid><doi>10.1088/0953-8984/17/25/009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2005-06, Vol.17 (25), p.3823-3836
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_873317080
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Atomic and electronic structure of carbon strings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20and%20electronic%20structure%20of%20carbon%20strings&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Tongay,%20S&rft.date=2005-06-29&rft.volume=17&rft.issue=25&rft.spage=3823&rft.epage=3836&rft.pages=3823-3836&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/17/25/009&rft_dat=%3Cproquest_pasca%3E29896478%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29896478&rft_id=info:pmid/21690699&rfr_iscdi=true