Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence

In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, inci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2011-06, Vol.67 (2), p.467-475
Hauptverfasser: Sommen, C., Commenges, D., Vu, S. Le, Meyer, L., Alioum, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 2
container_start_page 467
container_title Biometrics
container_volume 67
creator Sommen, C.
Commenges, D.
Vu, S. Le
Meyer, L.
Alioum, A.
description In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, incidence, and duration of recent infection (window period). However, recent works demonstrated limitations of this approach due to the use of an estimated mean "window period." We propose an alternative approach that consists in estimating the distribution of infection times based on serological marker values at the moment when the infection is first discovered. We propose a model based on the repeated measurements of virological markers of seroconversion for the marker trajectory. The parameters of the model are estimated using data from a cohort of HIV-infected patients enrolled during primary infection. This model can be used for estimating the distribution of infection times for newly HIV diagnosed subjects reported in a HIV surveillance system. An approach is proposed for estimating HIV incidence from these results.
doi_str_mv 10.1111/j.1541-0420.2010.01473.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_873314727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242484</jstor_id><sourcerecordid>41242484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4893-2829e2d5e4bc387ed91b2ef8013a8affd0be3b6a0384a127b2e6c14cea2e8dd03</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS0EotPCI4AiNrDJ4L9JHBaVmLY0kaZ0QQvsLMe5GTwk8WAnYvoYvDHOpB0JFghv_HPO_a50jxGKCJ6TsN5u5mTBSYw5xXOKwysmPGXz3SM0OwiP0QxjnMSMk69H6Nj7TbhmC0yfoiOKU0YSns7Qrwvfm1b1xnaRraP-G0TnxvfOlMPDW9HVoPeXG9OCj2696dbRynZr0w-V6VQTfQJnG7s2OpyvlPsOzo-VefH5XVS02yYII8BHtXX7Hn92Db7QRZsKOg3P0JNaNR6e3-8n6PbDxc1ZHq-uL4uz96tYc5GxmAqaAa0WwEvNRApVRkoKtcCEKaHqusIlsDJRmAmuCE2DmGjCNSgKoqowO0GvJ-7W2R8D-F62xmtoGtWBHbwUKWNhqjQNzjf_dBJMsWAZwVmwvvrLurGDCyMaeVQwTOhoEpNJO-u9g1puXZiGuwskOeYrN3KMUY4xyjFfuc9X7kLpy3v-ULZQHQofAg2G08nw0zRw999guSyur8ZjALyYABvfW3cAcEI55YIHPZ708Etgd9BD6DJJWbqQXz5eyjzPl5yJpcTsN37nzSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872830129</pqid></control><display><type>article</type><title>Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence</title><source>Oxford University Press Journals</source><source>MEDLINE</source><source>Wiley Online Library</source><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Sommen, C. ; Commenges, D. ; Vu, S. Le ; Meyer, L. ; Alioum, A.</creator><creatorcontrib>Sommen, C. ; Commenges, D. ; Vu, S. Le ; Meyer, L. ; Alioum, A.</creatorcontrib><description>In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, incidence, and duration of recent infection (window period). However, recent works demonstrated limitations of this approach due to the use of an estimated mean "window period." We propose an alternative approach that consists in estimating the distribution of infection times based on serological marker values at the moment when the infection is first discovered. We propose a model based on the repeated measurements of virological markers of seroconversion for the marker trajectory. The parameters of the model are estimated using data from a cohort of HIV-infected patients enrolled during primary infection. This model can be used for estimating the distribution of infection times for newly HIV diagnosed subjects reported in a HIV surveillance system. An approach is proposed for estimating HIV incidence from these results.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01473.x</identifier><identifier>PMID: 20731647</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>AIDS ; Antibodies ; Bioinformatics ; Biomarkers ; Biomarkers - blood ; BIOMETRIC METHODOLOGY ; Biometrics ; Dynamic modeling ; Estimating techniques ; Estimation methods ; HIV ; HIV incidence ; HIV infections ; HIV Infections - diagnosis ; HIV Infections - epidemiology ; HIV Seropositivity ; Human immunodeficiency virus ; Humans ; Incidence ; Infections ; Longitudinal data ; Longitudinal Studies ; Medical research ; Mixed model ; Parametric models ; Point estimators ; Population Surveillance ; Recent infections ; Regression Analysis ; Statistical Distributions ; Surveillance ; Surveillance system</subject><ispartof>Biometrics, 2011-06, Vol.67 (2), p.467-475</ispartof><rights>2011 International Biometric Society</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4893-2829e2d5e4bc387ed91b2ef8013a8affd0be3b6a0384a127b2e6c14cea2e8dd03</citedby><cites>FETCH-LOGICAL-c4893-2829e2d5e4bc387ed91b2ef8013a8affd0be3b6a0384a127b2e6c14cea2e8dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242484$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242484$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,27923,27924,45573,45574,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20731647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sommen, C.</creatorcontrib><creatorcontrib>Commenges, D.</creatorcontrib><creatorcontrib>Vu, S. Le</creatorcontrib><creatorcontrib>Meyer, L.</creatorcontrib><creatorcontrib>Alioum, A.</creatorcontrib><title>Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, incidence, and duration of recent infection (window period). However, recent works demonstrated limitations of this approach due to the use of an estimated mean "window period." We propose an alternative approach that consists in estimating the distribution of infection times based on serological marker values at the moment when the infection is first discovered. We propose a model based on the repeated measurements of virological markers of seroconversion for the marker trajectory. The parameters of the model are estimated using data from a cohort of HIV-infected patients enrolled during primary infection. This model can be used for estimating the distribution of infection times for newly HIV diagnosed subjects reported in a HIV surveillance system. An approach is proposed for estimating HIV incidence from these results.</description><subject>AIDS</subject><subject>Antibodies</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Dynamic modeling</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>HIV</subject><subject>HIV incidence</subject><subject>HIV infections</subject><subject>HIV Infections - diagnosis</subject><subject>HIV Infections - epidemiology</subject><subject>HIV Seropositivity</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infections</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Medical research</subject><subject>Mixed model</subject><subject>Parametric models</subject><subject>Point estimators</subject><subject>Population Surveillance</subject><subject>Recent infections</subject><subject>Regression Analysis</subject><subject>Statistical Distributions</subject><subject>Surveillance</subject><subject>Surveillance system</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhS0EotPCI4AiNrDJ4L9JHBaVmLY0kaZ0QQvsLMe5GTwk8WAnYvoYvDHOpB0JFghv_HPO_a50jxGKCJ6TsN5u5mTBSYw5xXOKwysmPGXz3SM0OwiP0QxjnMSMk69H6Nj7TbhmC0yfoiOKU0YSns7Qrwvfm1b1xnaRraP-G0TnxvfOlMPDW9HVoPeXG9OCj2696dbRynZr0w-V6VQTfQJnG7s2OpyvlPsOzo-VefH5XVS02yYII8BHtXX7Hn92Db7QRZsKOg3P0JNaNR6e3-8n6PbDxc1ZHq-uL4uz96tYc5GxmAqaAa0WwEvNRApVRkoKtcCEKaHqusIlsDJRmAmuCE2DmGjCNSgKoqowO0GvJ-7W2R8D-F62xmtoGtWBHbwUKWNhqjQNzjf_dBJMsWAZwVmwvvrLurGDCyMaeVQwTOhoEpNJO-u9g1puXZiGuwskOeYrN3KMUY4xyjFfuc9X7kLpy3v-ULZQHQofAg2G08nw0zRw999guSyur8ZjALyYABvfW3cAcEI55YIHPZ708Etgd9BD6DJJWbqQXz5eyjzPl5yJpcTsN37nzSc</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Sommen, C.</creator><creator>Commenges, D.</creator><creator>Vu, S. Le</creator><creator>Meyer, L.</creator><creator>Alioum, A.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence</title><author>Sommen, C. ; Commenges, D. ; Vu, S. Le ; Meyer, L. ; Alioum, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4893-2829e2d5e4bc387ed91b2ef8013a8affd0be3b6a0384a127b2e6c14cea2e8dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AIDS</topic><topic>Antibodies</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Dynamic modeling</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>HIV</topic><topic>HIV incidence</topic><topic>HIV infections</topic><topic>HIV Infections - diagnosis</topic><topic>HIV Infections - epidemiology</topic><topic>HIV Seropositivity</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infections</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Medical research</topic><topic>Mixed model</topic><topic>Parametric models</topic><topic>Point estimators</topic><topic>Population Surveillance</topic><topic>Recent infections</topic><topic>Regression Analysis</topic><topic>Statistical Distributions</topic><topic>Surveillance</topic><topic>Surveillance system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sommen, C.</creatorcontrib><creatorcontrib>Commenges, D.</creatorcontrib><creatorcontrib>Vu, S. Le</creatorcontrib><creatorcontrib>Meyer, L.</creatorcontrib><creatorcontrib>Alioum, A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sommen, C.</au><au>Commenges, D.</au><au>Vu, S. Le</au><au>Meyer, L.</au><au>Alioum, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2011-06</date><risdate>2011</risdate><volume>67</volume><issue>2</issue><spage>467</spage><epage>475</epage><pages>467-475</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, incidence, and duration of recent infection (window period). However, recent works demonstrated limitations of this approach due to the use of an estimated mean "window period." We propose an alternative approach that consists in estimating the distribution of infection times based on serological marker values at the moment when the infection is first discovered. We propose a model based on the repeated measurements of virological markers of seroconversion for the marker trajectory. The parameters of the model are estimated using data from a cohort of HIV-infected patients enrolled during primary infection. This model can be used for estimating the distribution of infection times for newly HIV diagnosed subjects reported in a HIV surveillance system. An approach is proposed for estimating HIV incidence from these results.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20731647</pmid><doi>10.1111/j.1541-0420.2010.01473.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2011-06, Vol.67 (2), p.467-475
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_873314727
source Oxford University Press Journals; MEDLINE; Wiley Online Library; JSTOR Mathematics and Statistics; JSTOR
subjects AIDS
Antibodies
Bioinformatics
Biomarkers
Biomarkers - blood
BIOMETRIC METHODOLOGY
Biometrics
Dynamic modeling
Estimating techniques
Estimation methods
HIV
HIV incidence
HIV infections
HIV Infections - diagnosis
HIV Infections - epidemiology
HIV Seropositivity
Human immunodeficiency virus
Humans
Incidence
Infections
Longitudinal data
Longitudinal Studies
Medical research
Mixed model
Parametric models
Point estimators
Population Surveillance
Recent infections
Regression Analysis
Statistical Distributions
Surveillance
Surveillance system
title Estimation of the Distribution of Infection Times Using Longitudinal Serological Markers of HIV: Implications for the Estimation of HIV Incidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Distribution%20of%20Infection%20Times%20Using%20Longitudinal%20Serological%20Markers%20of%20HIV:%20Implications%20for%20the%20Estimation%20of%20HIV%20Incidence&rft.jtitle=Biometrics&rft.au=Sommen,%20C.&rft.date=2011-06&rft.volume=67&rft.issue=2&rft.spage=467&rft.epage=475&rft.pages=467-475&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01473.x&rft_dat=%3Cjstor_proqu%3E41242484%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872830129&rft_id=info:pmid/20731647&rft_jstor_id=41242484&rfr_iscdi=true