Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences

Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2011-07, Vol.27 (13), p.1780-1787
Hauptverfasser: Lee, Tzong-Yi, Lin, Zong-Qing, Hsieh, Sheng-Jen, Bretaña, Neil Arvin, Lu, Cheng-Tsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787
container_issue 13
container_start_page 1780
container_title Bioinformatics
container_volume 27
creator Lee, Tzong-Yi
Lin, Zong-Qing
Hsieh, Sheng-Jen
Bretaña, Neil Arvin
Lu, Cheng-Tsung
description Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X. Contact: francis@saturn.yzu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btr291
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_873119938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btr291</oup_id><sourcerecordid>873119938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</originalsourceid><addsrcrecordid>eNqNkMtqHDEQRUWwyfiRT0jQxnjVsdR6dGsZjOMYDNnY60ajx6DQLfWoeoL996lhJgneeVVF6dy6pUvIZ86-cmbEzTqVlGOpk12Sg5v1UlvDP5AzLjVrWqbMCfZCd43smViRc4BfjCkupfxIVi1XinOpzsj27mUeS1pS3tDJvqTJjtSHOWQfsgvYujLNBRAomS6FJpwvKb5SVzKE-jt4OhUcAI21TNTSTS27mZZI7Zg2GZ8BCy6FsN3tV8IlOY12hPDpWC_I8_e7p9sfzePP-4fbb4-Nk6ZdGi-Ello7bQS3McbeGLzaq2C0j15rGXl06yB61XMme6876TqG37N9FBbVF-T6sHeuBa1hGaYELoyjzaHsYOg7wbkxokdSHUhXC0ANcZgrBlFfB86GfdjD27CHQ9io-3J02K2n4P-p_qaLwNURsODsGKvNLsF_TradEnx_ADtwGN07vf8AwOihLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873119938</pqid></control><display><type>article</type><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><source>Oxford Journals Open Access Collection</source><creator>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</creator><creatorcontrib>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</creatorcontrib><description>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X. Contact: francis@saturn.yzu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr291</identifier><identifier>PMID: 21551145</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acid Motifs ; Biological and medical sciences ; Cluster Analysis ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Phosphorylation ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants - chemistry ; Plants - metabolism ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Protein Processing, Post-Translational ; Protein Sorting Signals ; Substrate Specificity</subject><ispartof>Bioinformatics, 2011-07, Vol.27 (13), p.1780-1787</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</citedby><cites>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btr291$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24275318$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21551145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><creatorcontrib>Lin, Zong-Qing</creatorcontrib><creatorcontrib>Hsieh, Sheng-Jen</creatorcontrib><creatorcontrib>Bretaña, Neil Arvin</creatorcontrib><creatorcontrib>Lu, Cheng-Tsung</creatorcontrib><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X. Contact: francis@saturn.yzu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Amino Acid Motifs</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Phosphorylation</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - chemistry</subject><subject>Plants - metabolism</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Sorting Signals</subject><subject>Substrate Specificity</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtqHDEQRUWwyfiRT0jQxnjVsdR6dGsZjOMYDNnY60ajx6DQLfWoeoL996lhJgneeVVF6dy6pUvIZ86-cmbEzTqVlGOpk12Sg5v1UlvDP5AzLjVrWqbMCfZCd43smViRc4BfjCkupfxIVi1XinOpzsj27mUeS1pS3tDJvqTJjtSHOWQfsgvYujLNBRAomS6FJpwvKb5SVzKE-jt4OhUcAI21TNTSTS27mZZI7Zg2GZ8BCy6FsN3tV8IlOY12hPDpWC_I8_e7p9sfzePP-4fbb4-Nk6ZdGi-Ello7bQS3McbeGLzaq2C0j15rGXl06yB61XMme6876TqG37N9FBbVF-T6sHeuBa1hGaYELoyjzaHsYOg7wbkxokdSHUhXC0ANcZgrBlFfB86GfdjD27CHQ9io-3J02K2n4P-p_qaLwNURsODsGKvNLsF_TradEnx_ADtwGN07vf8AwOihLw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lee, Tzong-Yi</creator><creator>Lin, Zong-Qing</creator><creator>Hsieh, Sheng-Jen</creator><creator>Bretaña, Neil Arvin</creator><creator>Lu, Cheng-Tsung</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><author>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Motifs</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Phosphorylation</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - chemistry</topic><topic>Plants - metabolism</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Sorting Signals</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><creatorcontrib>Lin, Zong-Qing</creatorcontrib><creatorcontrib>Hsieh, Sheng-Jen</creatorcontrib><creatorcontrib>Bretaña, Neil Arvin</creatorcontrib><creatorcontrib>Lu, Cheng-Tsung</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Tzong-Yi</au><au>Lin, Zong-Qing</au><au>Hsieh, Sheng-Jen</au><au>Bretaña, Neil Arvin</au><au>Lu, Cheng-Tsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>27</volume><issue>13</issue><spage>1780</spage><epage>1787</epage><pages>1780-1787</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X. Contact: francis@saturn.yzu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21551145</pmid><doi>10.1093/bioinformatics/btr291</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2011-07, Vol.27 (13), p.1780-1787
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_873119938
source Oxford Journals Open Access Collection
subjects Amino Acid Motifs
Biological and medical sciences
Cluster Analysis
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Hydrophobic and Hydrophilic Interactions
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Phosphorylation
Plant Proteins - chemistry
Plant Proteins - metabolism
Plants - chemistry
Plants - metabolism
Protein Kinases - chemistry
Protein Kinases - metabolism
Protein Processing, Post-Translational
Protein Sorting Signals
Substrate Specificity
title Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20maximal%20dependence%20decomposition%20to%20identify%20conserved%20motifs%20from%20a%20group%20of%20aligned%20signal%20sequences&rft.jtitle=Bioinformatics&rft.au=Lee,%20Tzong-Yi&rft.date=2011-07-01&rft.volume=27&rft.issue=13&rft.spage=1780&rft.epage=1787&rft.pages=1780-1787&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btr291&rft_dat=%3Cproquest_TOX%3E873119938%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873119938&rft_id=info:pmid/21551145&rft_oup_id=10.1093/bioinformatics/btr291&rfr_iscdi=true