Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences
Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2011-07, Vol.27 (13), p.1780-1787 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 |
---|---|
container_issue | 13 |
container_start_page | 1780 |
container_title | Bioinformatics |
container_volume | 27 |
creator | Lee, Tzong-Yi Lin, Zong-Qing Hsieh, Sheng-Jen Bretaña, Neil Arvin Lu, Cheng-Tsung |
description | Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X.
Contact:
francis@saturn.yzu.edu.tw
Supplementary information:
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btr291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_873119938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btr291</oup_id><sourcerecordid>873119938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</originalsourceid><addsrcrecordid>eNqNkMtqHDEQRUWwyfiRT0jQxnjVsdR6dGsZjOMYDNnY60ajx6DQLfWoeoL996lhJgneeVVF6dy6pUvIZ86-cmbEzTqVlGOpk12Sg5v1UlvDP5AzLjVrWqbMCfZCd43smViRc4BfjCkupfxIVi1XinOpzsj27mUeS1pS3tDJvqTJjtSHOWQfsgvYujLNBRAomS6FJpwvKb5SVzKE-jt4OhUcAI21TNTSTS27mZZI7Zg2GZ8BCy6FsN3tV8IlOY12hPDpWC_I8_e7p9sfzePP-4fbb4-Nk6ZdGi-Ello7bQS3McbeGLzaq2C0j15rGXl06yB61XMme6876TqG37N9FBbVF-T6sHeuBa1hGaYELoyjzaHsYOg7wbkxokdSHUhXC0ANcZgrBlFfB86GfdjD27CHQ9io-3J02K2n4P-p_qaLwNURsODsGKvNLsF_TradEnx_ADtwGN07vf8AwOihLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873119938</pqid></control><display><type>article</type><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><source>Oxford Journals Open Access Collection</source><creator>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</creator><creatorcontrib>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</creatorcontrib><description>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X.
Contact:
francis@saturn.yzu.edu.tw
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr291</identifier><identifier>PMID: 21551145</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acid Motifs ; Biological and medical sciences ; Cluster Analysis ; Fundamental and applied biological sciences. Psychology ; General aspects ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Phosphorylation ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants - chemistry ; Plants - metabolism ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Protein Processing, Post-Translational ; Protein Sorting Signals ; Substrate Specificity</subject><ispartof>Bioinformatics, 2011-07, Vol.27 (13), p.1780-1787</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</citedby><cites>FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btr291$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24275318$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21551145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><creatorcontrib>Lin, Zong-Qing</creatorcontrib><creatorcontrib>Hsieh, Sheng-Jen</creatorcontrib><creatorcontrib>Bretaña, Neil Arvin</creatorcontrib><creatorcontrib>Lu, Cheng-Tsung</creatorcontrib><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X.
Contact:
francis@saturn.yzu.edu.tw
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><subject>Amino Acid Motifs</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Phosphorylation</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - chemistry</subject><subject>Plants - metabolism</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Sorting Signals</subject><subject>Substrate Specificity</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtqHDEQRUWwyfiRT0jQxnjVsdR6dGsZjOMYDNnY60ajx6DQLfWoeoL996lhJgneeVVF6dy6pUvIZ86-cmbEzTqVlGOpk12Sg5v1UlvDP5AzLjVrWqbMCfZCd43smViRc4BfjCkupfxIVi1XinOpzsj27mUeS1pS3tDJvqTJjtSHOWQfsgvYujLNBRAomS6FJpwvKb5SVzKE-jt4OhUcAI21TNTSTS27mZZI7Zg2GZ8BCy6FsN3tV8IlOY12hPDpWC_I8_e7p9sfzePP-4fbb4-Nk6ZdGi-Ello7bQS3McbeGLzaq2C0j15rGXl06yB61XMme6876TqG37N9FBbVF-T6sHeuBa1hGaYELoyjzaHsYOg7wbkxokdSHUhXC0ANcZgrBlFfB86GfdjD27CHQ9io-3J02K2n4P-p_qaLwNURsODsGKvNLsF_TradEnx_ADtwGN07vf8AwOihLw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lee, Tzong-Yi</creator><creator>Lin, Zong-Qing</creator><creator>Hsieh, Sheng-Jen</creator><creator>Bretaña, Neil Arvin</creator><creator>Lu, Cheng-Tsung</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</title><author>Lee, Tzong-Yi ; Lin, Zong-Qing ; Hsieh, Sheng-Jen ; Bretaña, Neil Arvin ; Lu, Cheng-Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-d336466c6931afff899215d5e96dfd664f1fcbe38581048d674c70444a8f3ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Motifs</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Phosphorylation</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - chemistry</topic><topic>Plants - metabolism</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Sorting Signals</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Tzong-Yi</creatorcontrib><creatorcontrib>Lin, Zong-Qing</creatorcontrib><creatorcontrib>Hsieh, Sheng-Jen</creatorcontrib><creatorcontrib>Bretaña, Neil Arvin</creatorcontrib><creatorcontrib>Lu, Cheng-Tsung</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Tzong-Yi</au><au>Lin, Zong-Qing</au><au>Hsieh, Sheng-Jen</au><au>Bretaña, Neil Arvin</au><au>Lu, Cheng-Tsung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>27</volume><issue>13</issue><spage>1780</spage><epage>1787</epage><pages>1780-1787</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites). Due to the difficulty in exploring conserved motifs on a large-scale sequence data involved with various signals, a new method, MDDLogo, is developed. MDDLogo applies maximal dependence decomposition (MDD) to cluster a group of aligned signal sequences into subgroups containing statistically significant motifs. In order to extract motifs that contain a conserved biochemical property of amino acids in protein sequences, the set of 20 amino acids is further categorized according to their physicochemical properties, e.g. hydrophobicity, charge or molecular size. MDDLogo has been demonstrated to accurately identify the kinase-specific substrate motifs in 1221 human phosphorylation sites associated with seven well-known kinase families from Phospho.ELM. Moreover, in a set of plant phosphorylation data-lacking kinase information, MDDLogo has been applied to help in the investigation of substrate motifs of potential kinases and in the improvement of the identification of plant phosphorylation sites with various substrate specificities. In this study, MDDLogo is comparable with another well-known motif discover tool, Motif-X.
Contact:
francis@saturn.yzu.edu.tw
Supplementary information:
Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21551145</pmid><doi>10.1093/bioinformatics/btr291</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2011-07, Vol.27 (13), p.1780-1787 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_873119938 |
source | Oxford Journals Open Access Collection |
subjects | Amino Acid Motifs Biological and medical sciences Cluster Analysis Fundamental and applied biological sciences. Psychology General aspects Humans Hydrophobic and Hydrophilic Interactions Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Phosphorylation Plant Proteins - chemistry Plant Proteins - metabolism Plants - chemistry Plants - metabolism Protein Kinases - chemistry Protein Kinases - metabolism Protein Processing, Post-Translational Protein Sorting Signals Substrate Specificity |
title | Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20maximal%20dependence%20decomposition%20to%20identify%20conserved%20motifs%20from%20a%20group%20of%20aligned%20signal%20sequences&rft.jtitle=Bioinformatics&rft.au=Lee,%20Tzong-Yi&rft.date=2011-07-01&rft.volume=27&rft.issue=13&rft.spage=1780&rft.epage=1787&rft.pages=1780-1787&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btr291&rft_dat=%3Cproquest_TOX%3E873119938%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873119938&rft_id=info:pmid/21551145&rft_oup_id=10.1093/bioinformatics/btr291&rfr_iscdi=true |