Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems
Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects o...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-06, Vol.45 (12), p.5395-5402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5402 |
---|---|
container_issue | 12 |
container_start_page | 5395 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Hinther, Ashley Bromba, Caleb M Wulff, Jeremy E Helbing, Caren C |
description | Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite. |
doi_str_mv | 10.1021/es1041942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872527348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395668441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</originalsourceid><addsrcrecordid>eNpl0Utr3DAQAGBRUppN2kP_QBGBEAJ1o4f1OoYlL0jpIRvozWjlceNgW4nGPuw5fzxadpuFBASShk8zI4aQ75z94kzwM0DOSu5K8YnMuBKsUFbxPTJjjMvCSf13nxwgPjLGhGT2C9kXXJkyrxl5uWgaCCPS2NBFakMXg09LP_zc3nB99ENNf8P4sOp2URoHunhYpdjW9DqmPg5Az8PY5vCa340JEGk70MsU_20y-L73XZufzqdunBLQuxWO0ONX8rnxHcK37X5I7i8vFvPr4vbP1c38_Lbw0vCxCDr_xwlvpRQCmFXL2urSmTrUzrvagpSga81MAMMUUyFwpbXT3Fpjlq6Rh-Rkk_cpxecJcKz6FgN0nR8gTlhZI5QwsrRZHr2Tj3FKQ24uI2WkFaXL6HSDQoqICZrqKbW9T6uKs2o9l-ptLtn-2Caclj3Ub_L_IDI43gKPwXdN8kNocefK3JqWfOd8wF1THwu-AsbVn4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875738249</pqid></control><display><type>article</type><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><source>MEDLINE</source><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</creator><creatorcontrib>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</creatorcontrib><description>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es1041942</identifier><identifier>PMID: 21574574</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amphibia. Reptilia ; Animals ; Bacteria ; Biological and medical sciences ; Carbanilides - toxicity ; Catalase - genetics ; Catalase - metabolism ; Cell Line ; Cells ; Ecotoxicology and Human Environmental Health ; Frogs ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Growth Hormone - genetics ; Growth Hormone - metabolism ; Heat shock proteins ; HSP30 Heat-Shock Proteins - genetics ; HSP30 Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Iodide Peroxidase - genetics ; Iodide Peroxidase - metabolism ; Keratins - genetics ; Keratins - metabolism ; Larva - drug effects ; Larva - genetics ; Mammalia ; Mammals - physiology ; Metabolism ; Organ Culture Techniques ; Polymerase Chain Reaction ; Prolactin - genetics ; Prolactin - metabolism ; Ranidae - genetics ; Ranidae - physiology ; Rats ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Stress, Physiological - drug effects ; Thyroid gland ; Thyroid Hormone Receptors beta - drug effects ; Thyroid Hormone Receptors beta - metabolism ; Thyroid Hormones - pharmacology ; Triclosan - analogs & derivatives ; Triclosan - toxicity ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>Environmental science & technology, 2011-06, Vol.45 (12), p.5395-5402</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</citedby><cites>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es1041942$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es1041942$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24252631$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21574574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinther, Ashley</creatorcontrib><creatorcontrib>Bromba, Caleb M</creatorcontrib><creatorcontrib>Wulff, Jeremy E</creatorcontrib><creatorcontrib>Helbing, Caren C</creatorcontrib><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</description><subject>Amphibia. Reptilia</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Carbanilides - toxicity</subject><subject>Catalase - genetics</subject><subject>Catalase - metabolism</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Frogs</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Growth Hormone - genetics</subject><subject>Growth Hormone - metabolism</subject><subject>Heat shock proteins</subject><subject>HSP30 Heat-Shock Proteins - genetics</subject><subject>HSP30 Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Iodide Peroxidase - genetics</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Keratins - genetics</subject><subject>Keratins - metabolism</subject><subject>Larva - drug effects</subject><subject>Larva - genetics</subject><subject>Mammalia</subject><subject>Mammals - physiology</subject><subject>Metabolism</subject><subject>Organ Culture Techniques</subject><subject>Polymerase Chain Reaction</subject><subject>Prolactin - genetics</subject><subject>Prolactin - metabolism</subject><subject>Ranidae - genetics</subject><subject>Ranidae - physiology</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Stress, Physiological - drug effects</subject><subject>Thyroid gland</subject><subject>Thyroid Hormone Receptors beta - drug effects</subject><subject>Thyroid Hormone Receptors beta - metabolism</subject><subject>Thyroid Hormones - pharmacology</subject><subject>Triclosan - analogs & derivatives</subject><subject>Triclosan - toxicity</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0Utr3DAQAGBRUppN2kP_QBGBEAJ1o4f1OoYlL0jpIRvozWjlceNgW4nGPuw5fzxadpuFBASShk8zI4aQ75z94kzwM0DOSu5K8YnMuBKsUFbxPTJjjMvCSf13nxwgPjLGhGT2C9kXXJkyrxl5uWgaCCPS2NBFakMXg09LP_zc3nB99ENNf8P4sOp2URoHunhYpdjW9DqmPg5Az8PY5vCa340JEGk70MsU_20y-L73XZufzqdunBLQuxWO0ONX8rnxHcK37X5I7i8vFvPr4vbP1c38_Lbw0vCxCDr_xwlvpRQCmFXL2urSmTrUzrvagpSga81MAMMUUyFwpbXT3Fpjlq6Rh-Rkk_cpxecJcKz6FgN0nR8gTlhZI5QwsrRZHr2Tj3FKQ24uI2WkFaXL6HSDQoqICZrqKbW9T6uKs2o9l-ptLtn-2Caclj3Ub_L_IDI43gKPwXdN8kNocefK3JqWfOd8wF1THwu-AsbVn4k</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Hinther, Ashley</creator><creator>Bromba, Caleb M</creator><creator>Wulff, Jeremy E</creator><creator>Helbing, Caren C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110615</creationdate><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><author>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amphibia. Reptilia</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Carbanilides - toxicity</topic><topic>Catalase - genetics</topic><topic>Catalase - metabolism</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Frogs</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Growth Hormone - genetics</topic><topic>Growth Hormone - metabolism</topic><topic>Heat shock proteins</topic><topic>HSP30 Heat-Shock Proteins - genetics</topic><topic>HSP30 Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Iodide Peroxidase - genetics</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Keratins - genetics</topic><topic>Keratins - metabolism</topic><topic>Larva - drug effects</topic><topic>Larva - genetics</topic><topic>Mammalia</topic><topic>Mammals - physiology</topic><topic>Metabolism</topic><topic>Organ Culture Techniques</topic><topic>Polymerase Chain Reaction</topic><topic>Prolactin - genetics</topic><topic>Prolactin - metabolism</topic><topic>Ranidae - genetics</topic><topic>Ranidae - physiology</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Stress, Physiological - drug effects</topic><topic>Thyroid gland</topic><topic>Thyroid Hormone Receptors beta - drug effects</topic><topic>Thyroid Hormone Receptors beta - metabolism</topic><topic>Thyroid Hormones - pharmacology</topic><topic>Triclosan - analogs & derivatives</topic><topic>Triclosan - toxicity</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinther, Ashley</creatorcontrib><creatorcontrib>Bromba, Caleb M</creatorcontrib><creatorcontrib>Wulff, Jeremy E</creatorcontrib><creatorcontrib>Helbing, Caren C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinther, Ashley</au><au>Bromba, Caleb M</au><au>Wulff, Jeremy E</au><au>Helbing, Caren C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-06-15</date><risdate>2011</risdate><volume>45</volume><issue>12</issue><spage>5395</spage><epage>5402</epage><pages>5395-5402</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21574574</pmid><doi>10.1021/es1041942</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-06, Vol.45 (12), p.5395-5402 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_872527348 |
source | MEDLINE; ACS_美国化学学会期刊(与NSTL共建) |
subjects | Amphibia. Reptilia Animals Bacteria Biological and medical sciences Carbanilides - toxicity Catalase - genetics Catalase - metabolism Cell Line Cells Ecotoxicology and Human Environmental Health Frogs Fundamental and applied biological sciences. Psychology Gene Expression Regulation - drug effects Growth Hormone - genetics Growth Hormone - metabolism Heat shock proteins HSP30 Heat-Shock Proteins - genetics HSP30 Heat-Shock Proteins - metabolism HSP70 Heat-Shock Proteins - genetics HSP70 Heat-Shock Proteins - metabolism Iodide Peroxidase - genetics Iodide Peroxidase - metabolism Keratins - genetics Keratins - metabolism Larva - drug effects Larva - genetics Mammalia Mammals - physiology Metabolism Organ Culture Techniques Polymerase Chain Reaction Prolactin - genetics Prolactin - metabolism Ranidae - genetics Ranidae - physiology Rats RNA, Messenger - genetics RNA, Messenger - metabolism Stress, Physiological - drug effects Thyroid gland Thyroid Hormone Receptors beta - drug effects Thyroid Hormone Receptors beta - metabolism Thyroid Hormones - pharmacology Triclosan - analogs & derivatives Triclosan - toxicity Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Triclocarban,%20Triclosan,%20and%20Methyl%20Triclosan%20on%20Thyroid%20Hormone%20Action%20and%20Stress%20in%20Frog%20and%20Mammalian%20Culture%20Systems&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hinther,%20Ashley&rft.date=2011-06-15&rft.volume=45&rft.issue=12&rft.spage=5395&rft.epage=5402&rft.pages=5395-5402&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es1041942&rft_dat=%3Cproquest_cross%3E2395668441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875738249&rft_id=info:pmid/21574574&rfr_iscdi=true |