Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems

Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-06, Vol.45 (12), p.5395-5402
Hauptverfasser: Hinther, Ashley, Bromba, Caleb M, Wulff, Jeremy E, Helbing, Caren C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5402
container_issue 12
container_start_page 5395
container_title Environmental science & technology
container_volume 45
creator Hinther, Ashley
Bromba, Caleb M
Wulff, Jeremy E
Helbing, Caren C
description Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.
doi_str_mv 10.1021/es1041942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872527348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395668441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</originalsourceid><addsrcrecordid>eNpl0Utr3DAQAGBRUppN2kP_QBGBEAJ1o4f1OoYlL0jpIRvozWjlceNgW4nGPuw5fzxadpuFBASShk8zI4aQ75z94kzwM0DOSu5K8YnMuBKsUFbxPTJjjMvCSf13nxwgPjLGhGT2C9kXXJkyrxl5uWgaCCPS2NBFakMXg09LP_zc3nB99ENNf8P4sOp2URoHunhYpdjW9DqmPg5Az8PY5vCa340JEGk70MsU_20y-L73XZufzqdunBLQuxWO0ONX8rnxHcK37X5I7i8vFvPr4vbP1c38_Lbw0vCxCDr_xwlvpRQCmFXL2urSmTrUzrvagpSga81MAMMUUyFwpbXT3Fpjlq6Rh-Rkk_cpxecJcKz6FgN0nR8gTlhZI5QwsrRZHr2Tj3FKQ24uI2WkFaXL6HSDQoqICZrqKbW9T6uKs2o9l-ptLtn-2Caclj3Ub_L_IDI43gKPwXdN8kNocefK3JqWfOd8wF1THwu-AsbVn4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875738249</pqid></control><display><type>article</type><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><source>MEDLINE</source><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</creator><creatorcontrib>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</creatorcontrib><description>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es1041942</identifier><identifier>PMID: 21574574</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amphibia. Reptilia ; Animals ; Bacteria ; Biological and medical sciences ; Carbanilides - toxicity ; Catalase - genetics ; Catalase - metabolism ; Cell Line ; Cells ; Ecotoxicology and Human Environmental Health ; Frogs ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Growth Hormone - genetics ; Growth Hormone - metabolism ; Heat shock proteins ; HSP30 Heat-Shock Proteins - genetics ; HSP30 Heat-Shock Proteins - metabolism ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Iodide Peroxidase - genetics ; Iodide Peroxidase - metabolism ; Keratins - genetics ; Keratins - metabolism ; Larva - drug effects ; Larva - genetics ; Mammalia ; Mammals - physiology ; Metabolism ; Organ Culture Techniques ; Polymerase Chain Reaction ; Prolactin - genetics ; Prolactin - metabolism ; Ranidae - genetics ; Ranidae - physiology ; Rats ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Stress, Physiological - drug effects ; Thyroid gland ; Thyroid Hormone Receptors beta - drug effects ; Thyroid Hormone Receptors beta - metabolism ; Thyroid Hormones - pharmacology ; Triclosan - analogs &amp; derivatives ; Triclosan - toxicity ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>Environmental science &amp; technology, 2011-06, Vol.45 (12), p.5395-5402</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</citedby><cites>FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es1041942$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es1041942$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24252631$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21574574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinther, Ashley</creatorcontrib><creatorcontrib>Bromba, Caleb M</creatorcontrib><creatorcontrib>Wulff, Jeremy E</creatorcontrib><creatorcontrib>Helbing, Caren C</creatorcontrib><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</description><subject>Amphibia. Reptilia</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Carbanilides - toxicity</subject><subject>Catalase - genetics</subject><subject>Catalase - metabolism</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Ecotoxicology and Human Environmental Health</subject><subject>Frogs</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Growth Hormone - genetics</subject><subject>Growth Hormone - metabolism</subject><subject>Heat shock proteins</subject><subject>HSP30 Heat-Shock Proteins - genetics</subject><subject>HSP30 Heat-Shock Proteins - metabolism</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Iodide Peroxidase - genetics</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Keratins - genetics</subject><subject>Keratins - metabolism</subject><subject>Larva - drug effects</subject><subject>Larva - genetics</subject><subject>Mammalia</subject><subject>Mammals - physiology</subject><subject>Metabolism</subject><subject>Organ Culture Techniques</subject><subject>Polymerase Chain Reaction</subject><subject>Prolactin - genetics</subject><subject>Prolactin - metabolism</subject><subject>Ranidae - genetics</subject><subject>Ranidae - physiology</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Stress, Physiological - drug effects</subject><subject>Thyroid gland</subject><subject>Thyroid Hormone Receptors beta - drug effects</subject><subject>Thyroid Hormone Receptors beta - metabolism</subject><subject>Thyroid Hormones - pharmacology</subject><subject>Triclosan - analogs &amp; derivatives</subject><subject>Triclosan - toxicity</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0Utr3DAQAGBRUppN2kP_QBGBEAJ1o4f1OoYlL0jpIRvozWjlceNgW4nGPuw5fzxadpuFBASShk8zI4aQ75z94kzwM0DOSu5K8YnMuBKsUFbxPTJjjMvCSf13nxwgPjLGhGT2C9kXXJkyrxl5uWgaCCPS2NBFakMXg09LP_zc3nB99ENNf8P4sOp2URoHunhYpdjW9DqmPg5Az8PY5vCa340JEGk70MsU_20y-L73XZufzqdunBLQuxWO0ONX8rnxHcK37X5I7i8vFvPr4vbP1c38_Lbw0vCxCDr_xwlvpRQCmFXL2urSmTrUzrvagpSga81MAMMUUyFwpbXT3Fpjlq6Rh-Rkk_cpxecJcKz6FgN0nR8gTlhZI5QwsrRZHr2Tj3FKQ24uI2WkFaXL6HSDQoqICZrqKbW9T6uKs2o9l-ptLtn-2Caclj3Ub_L_IDI43gKPwXdN8kNocefK3JqWfOd8wF1THwu-AsbVn4k</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Hinther, Ashley</creator><creator>Bromba, Caleb M</creator><creator>Wulff, Jeremy E</creator><creator>Helbing, Caren C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110615</creationdate><title>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</title><author>Hinther, Ashley ; Bromba, Caleb M ; Wulff, Jeremy E ; Helbing, Caren C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-c600192a83322e085bd86497dcd9a9d8e33e6d607ce70505cc15669618877b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amphibia. Reptilia</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Carbanilides - toxicity</topic><topic>Catalase - genetics</topic><topic>Catalase - metabolism</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Ecotoxicology and Human Environmental Health</topic><topic>Frogs</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Growth Hormone - genetics</topic><topic>Growth Hormone - metabolism</topic><topic>Heat shock proteins</topic><topic>HSP30 Heat-Shock Proteins - genetics</topic><topic>HSP30 Heat-Shock Proteins - metabolism</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Iodide Peroxidase - genetics</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Keratins - genetics</topic><topic>Keratins - metabolism</topic><topic>Larva - drug effects</topic><topic>Larva - genetics</topic><topic>Mammalia</topic><topic>Mammals - physiology</topic><topic>Metabolism</topic><topic>Organ Culture Techniques</topic><topic>Polymerase Chain Reaction</topic><topic>Prolactin - genetics</topic><topic>Prolactin - metabolism</topic><topic>Ranidae - genetics</topic><topic>Ranidae - physiology</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Stress, Physiological - drug effects</topic><topic>Thyroid gland</topic><topic>Thyroid Hormone Receptors beta - drug effects</topic><topic>Thyroid Hormone Receptors beta - metabolism</topic><topic>Thyroid Hormones - pharmacology</topic><topic>Triclosan - analogs &amp; derivatives</topic><topic>Triclosan - toxicity</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinther, Ashley</creatorcontrib><creatorcontrib>Bromba, Caleb M</creatorcontrib><creatorcontrib>Wulff, Jeremy E</creatorcontrib><creatorcontrib>Helbing, Caren C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinther, Ashley</au><au>Bromba, Caleb M</au><au>Wulff, Jeremy E</au><au>Helbing, Caren C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-06-15</date><risdate>2011</risdate><volume>45</volume><issue>12</issue><spage>5395</spage><epage>5402</epage><pages>5395-5402</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21574574</pmid><doi>10.1021/es1041942</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2011-06, Vol.45 (12), p.5395-5402
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_872527348
source MEDLINE; ACS_美国化学学会期刊(与NSTL共建)
subjects Amphibia. Reptilia
Animals
Bacteria
Biological and medical sciences
Carbanilides - toxicity
Catalase - genetics
Catalase - metabolism
Cell Line
Cells
Ecotoxicology and Human Environmental Health
Frogs
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - drug effects
Growth Hormone - genetics
Growth Hormone - metabolism
Heat shock proteins
HSP30 Heat-Shock Proteins - genetics
HSP30 Heat-Shock Proteins - metabolism
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Iodide Peroxidase - genetics
Iodide Peroxidase - metabolism
Keratins - genetics
Keratins - metabolism
Larva - drug effects
Larva - genetics
Mammalia
Mammals - physiology
Metabolism
Organ Culture Techniques
Polymerase Chain Reaction
Prolactin - genetics
Prolactin - metabolism
Ranidae - genetics
Ranidae - physiology
Rats
RNA, Messenger - genetics
RNA, Messenger - metabolism
Stress, Physiological - drug effects
Thyroid gland
Thyroid Hormone Receptors beta - drug effects
Thyroid Hormone Receptors beta - metabolism
Thyroid Hormones - pharmacology
Triclosan - analogs & derivatives
Triclosan - toxicity
Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution
title Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Triclocarban,%20Triclosan,%20and%20Methyl%20Triclosan%20on%20Thyroid%20Hormone%20Action%20and%20Stress%20in%20Frog%20and%20Mammalian%20Culture%20Systems&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hinther,%20Ashley&rft.date=2011-06-15&rft.volume=45&rft.issue=12&rft.spage=5395&rft.epage=5402&rft.pages=5395-5402&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es1041942&rft_dat=%3Cproquest_cross%3E2395668441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875738249&rft_id=info:pmid/21574574&rfr_iscdi=true