Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition

An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1999-10, Vol.71 (19), p.4263-4271
Hauptverfasser: Shaffer, Ronald E, Rose-Pehrsson, Susan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4271
container_issue 19
container_start_page 4263
container_title Analytical chemistry (Washington)
container_volume 71
creator Shaffer, Ronald E
Rose-Pehrsson, Susan L
description An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed training, and to decrease the false alarm rate. The utility of this new approach is illustrated with the use of four data sets extracted from simulated and laboratory-collected surface acoustic wave sensor array data. A competitive learning strategy, based on a learning vector quantization neural network, is shown to reduce the storage and computation requirements. The IPNN hidden layer requires only a fraction of the storage space of a conventional PNN. A simple distance-based calculation is reported to approximate the optimal kernel width of a PNN. This calculation is found to decrease the training time and requires no user input. A general procedure for selecting the optimal rejection threshold for a PNN-based algorithm using Monte Carlo simulations is also demonstrated. This outlier rejection strategy is implemented for an IPNN classifier and found to reject ambiguous patterns, thereby decreasing the potential for false alarms.
doi_str_mv 10.1021/ac990238+
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872526544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>872526544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-e7820ad9c95acaf846323080e6d5210ca83d43cfad12bc1ae5762417e2aabb073</originalsourceid><addsrcrecordid>eNplkGFr1EAQhoMo9lr94B-QIIKCRGdnk93Nx-PQtlD0sFX8Istks2m3TbJ1N6n237vlrj3QTy_DPLzMPFn2gsF7Bsg-kKlrQK7ePcoWrEIohFL4OFsAAC9QAuxl-zFeAjAGTDzN9pAJgaqqFtnP4-E6-Bvb5uvgG2pc7-LkTP7ZzoH6FNNvH67yZX_ug5suhrzzIV9d2MGZtD61Y0zzMgS6zdc0TTaM-Vdr_PnoJufHZ9mTjvpon2_zIPv26ePZ6qg4-XJ4vFqeFFQCnworFQK1takrMtSpUnDkoMCKtkIGhhRvS246ahk2hpGtpMCSSYtETQOSH2RvNr3pl1-zjZMeXDS272m0fo5aSaxQVGWZyFf_kJd-DmM6TiOTSnJWQ4LebiATfIzBdvo6uIHCrWag74zre-MJfbntm5vBtg_gveEEvN4CFJOyLtBoXNwV1qJGeYcVGyzpt38e1hSutJBcVvpsfar5d_zBDo9Q466WTNy98N95fwH_c6Gx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217873190</pqid></control><display><type>article</type><title>Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition</title><source>ACS Publications</source><creator>Shaffer, Ronald E ; Rose-Pehrsson, Susan L</creator><creatorcontrib>Shaffer, Ronald E ; Rose-Pehrsson, Susan L</creatorcontrib><description>An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed training, and to decrease the false alarm rate. The utility of this new approach is illustrated with the use of four data sets extracted from simulated and laboratory-collected surface acoustic wave sensor array data. A competitive learning strategy, based on a learning vector quantization neural network, is shown to reduce the storage and computation requirements. The IPNN hidden layer requires only a fraction of the storage space of a conventional PNN. A simple distance-based calculation is reported to approximate the optimal kernel width of a PNN. This calculation is found to decrease the training time and requires no user input. A general procedure for selecting the optimal rejection threshold for a PNN-based algorithm using Monte Carlo simulations is also demonstrated. This outlier rejection strategy is implemented for an IPNN classifier and found to reject ambiguous patterns, thereby decreasing the potential for false alarms.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac990238+</identifier><identifier>PMID: 21662855</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemicals ; Chemistry ; Exact sciences and technology ; General, instrumentation ; Neural networks ; Sensors</subject><ispartof>Analytical chemistry (Washington), 1999-10, Vol.71 (19), p.4263-4271</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 1, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-e7820ad9c95acaf846323080e6d5210ca83d43cfad12bc1ae5762417e2aabb073</citedby><cites>FETCH-LOGICAL-a403t-e7820ad9c95acaf846323080e6d5210ca83d43cfad12bc1ae5762417e2aabb073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac990238+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac990238+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1969275$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21662855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaffer, Ronald E</creatorcontrib><creatorcontrib>Rose-Pehrsson, Susan L</creatorcontrib><title>Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed training, and to decrease the false alarm rate. The utility of this new approach is illustrated with the use of four data sets extracted from simulated and laboratory-collected surface acoustic wave sensor array data. A competitive learning strategy, based on a learning vector quantization neural network, is shown to reduce the storage and computation requirements. The IPNN hidden layer requires only a fraction of the storage space of a conventional PNN. A simple distance-based calculation is reported to approximate the optimal kernel width of a PNN. This calculation is found to decrease the training time and requires no user input. A general procedure for selecting the optimal rejection threshold for a PNN-based algorithm using Monte Carlo simulations is also demonstrated. This outlier rejection strategy is implemented for an IPNN classifier and found to reject ambiguous patterns, thereby decreasing the potential for false alarms.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Neural networks</subject><subject>Sensors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplkGFr1EAQhoMo9lr94B-QIIKCRGdnk93Nx-PQtlD0sFX8Istks2m3TbJ1N6n237vlrj3QTy_DPLzMPFn2gsF7Bsg-kKlrQK7ePcoWrEIohFL4OFsAAC9QAuxl-zFeAjAGTDzN9pAJgaqqFtnP4-E6-Bvb5uvgG2pc7-LkTP7ZzoH6FNNvH67yZX_ug5suhrzzIV9d2MGZtD61Y0zzMgS6zdc0TTaM-Vdr_PnoJufHZ9mTjvpon2_zIPv26ePZ6qg4-XJ4vFqeFFQCnworFQK1takrMtSpUnDkoMCKtkIGhhRvS246ahk2hpGtpMCSSYtETQOSH2RvNr3pl1-zjZMeXDS272m0fo5aSaxQVGWZyFf_kJd-DmM6TiOTSnJWQ4LebiATfIzBdvo6uIHCrWag74zre-MJfbntm5vBtg_gveEEvN4CFJOyLtBoXNwV1qJGeYcVGyzpt38e1hSutJBcVvpsfar5d_zBDo9Q466WTNy98N95fwH_c6Gx</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Shaffer, Ronald E</creator><creator>Rose-Pehrsson, Susan L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19991001</creationdate><title>Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition</title><author>Shaffer, Ronald E ; Rose-Pehrsson, Susan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-e7820ad9c95acaf846323080e6d5210ca83d43cfad12bc1ae5762417e2aabb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Neural networks</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaffer, Ronald E</creatorcontrib><creatorcontrib>Rose-Pehrsson, Susan L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaffer, Ronald E</au><au>Rose-Pehrsson, Susan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>71</volume><issue>19</issue><spage>4263</spage><epage>4271</epage><pages>4263-4271</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed training, and to decrease the false alarm rate. The utility of this new approach is illustrated with the use of four data sets extracted from simulated and laboratory-collected surface acoustic wave sensor array data. A competitive learning strategy, based on a learning vector quantization neural network, is shown to reduce the storage and computation requirements. The IPNN hidden layer requires only a fraction of the storage space of a conventional PNN. A simple distance-based calculation is reported to approximate the optimal kernel width of a PNN. This calculation is found to decrease the training time and requires no user input. A general procedure for selecting the optimal rejection threshold for a PNN-based algorithm using Monte Carlo simulations is also demonstrated. This outlier rejection strategy is implemented for an IPNN classifier and found to reject ambiguous patterns, thereby decreasing the potential for false alarms.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21662855</pmid><doi>10.1021/ac990238+</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1999-10, Vol.71 (19), p.4263-4271
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_872526544
source ACS Publications
subjects Algorithms
Analytical chemistry
Chemicals
Chemistry
Exact sciences and technology
General, instrumentation
Neural networks
Sensors
title Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Probabilistic%20Neural%20Network%20Algorithm%20for%20Chemical%20Sensor%20Array%20Pattern%20Recognition&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Shaffer,%20Ronald%20E&rft.date=1999-10-01&rft.volume=71&rft.issue=19&rft.spage=4263&rft.epage=4271&rft.pages=4263-4271&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac990238+&rft_dat=%3Cproquest_cross%3E872526544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217873190&rft_id=info:pmid/21662855&rfr_iscdi=true