Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide

Production of chemicals and fuels directly from CO 2 is an attractive approach to solving the energy and environmental problems. 1-Butanol, a chemical feedstock and potential fuel, has been produced by fermentation of carbohydrates, both in native Clostridium species and various engineered hosts. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2011-07, Vol.13 (4), p.353-363
Hauptverfasser: Lan, Ethan I., Liao, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 4
container_start_page 353
container_title Metabolic engineering
container_volume 13
creator Lan, Ethan I.
Liao, James C.
description Production of chemicals and fuels directly from CO 2 is an attractive approach to solving the energy and environmental problems. 1-Butanol, a chemical feedstock and potential fuel, has been produced by fermentation of carbohydrates, both in native Clostridium species and various engineered hosts. To produce 1-butanol from CO 2, we transferred a modified CoA-dependent 1-butanol production pathway into a cyanobacterium, Synechococcus elongatus PCC 7942. We demonstrated the activity of each enzyme in the pathway by chromosomal integration and expression of the genes. In particular, Treponema denticola trans-enoyl-CoA reductase (Ter), which utilizes NADH as the reducing power, was used for the reduction of crotonyl-CoA to butyryl-CoA instead of Clostridium acetobutylicum butyryl-CoA dehydrogenase to by-pass the need of Clostridial ferredoxins. Addition of polyhistidine-tag increased the overall activity of Ter and resulted in higher 1-butanol production. Removal of oxygen is an important factor in the synthesis of 1-butanol in this organism. This result represents the first autotrophic 1-butanol production.
doi_str_mv 10.1016/j.ymben.2011.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872525308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717611000474</els_id><sourcerecordid>872525308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-4ad1afd51442b1773e9b05da310ba89f056bc01b7a4f042e67d6655a30fde6313</originalsourceid><addsrcrecordid>eNp9kUtP3TAQRq2KqlDaX4AE2dFNUk_iR7JggVBfElUXlLXlx_jKV0kMdlJx_319eylLVh6NznweHxNyBrQBCuLzttlNBuempQANZQ2l7A05ATqIWkLPjl5qKY7J-5y3tIB8gHfkuAUuhl7ACbn7iYs2cQy2wnkTZsQU5k0VfWV3eo5G26V0dOVjqqA261KaY_WQolvtEuJc-RSnyupkSu1CfAoOP5C3Xo8ZPz6fp-T-65ffN9_r21_fftxc39aW9bDUTDvQ3nFgrDUgZYeDodzpDqjR_eApF8ZSMFIzT1mLQjohONcd9Q5FB90puTzklnUeV8yLmkK2OI56xrhm1cuWt7yjfSE_vUoWnwyolMM-tDugNsWcE3r1kMKk065Ae06orfrnXe29K8pU8V6mzp8vWM2E7mXmv-gCXBwAr6PSmxSyur8rCaJ8ihTleYW4OhBYlP0JmFS2AWeLLiS0i3IxvLrCX-9Nnb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014107791</pqid></control><display><type>article</type><title>Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lan, Ethan I. ; Liao, James C.</creator><creatorcontrib>Lan, Ethan I. ; Liao, James C.</creatorcontrib><description>Production of chemicals and fuels directly from CO 2 is an attractive approach to solving the energy and environmental problems. 1-Butanol, a chemical feedstock and potential fuel, has been produced by fermentation of carbohydrates, both in native Clostridium species and various engineered hosts. To produce 1-butanol from CO 2, we transferred a modified CoA-dependent 1-butanol production pathway into a cyanobacterium, Synechococcus elongatus PCC 7942. We demonstrated the activity of each enzyme in the pathway by chromosomal integration and expression of the genes. In particular, Treponema denticola trans-enoyl-CoA reductase (Ter), which utilizes NADH as the reducing power, was used for the reduction of crotonyl-CoA to butyryl-CoA instead of Clostridium acetobutylicum butyryl-CoA dehydrogenase to by-pass the need of Clostridial ferredoxins. Addition of polyhistidine-tag increased the overall activity of Ter and resulted in higher 1-butanol production. Removal of oxygen is an important factor in the synthesis of 1-butanol in this organism. This result represents the first autotrophic 1-butanol production.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2011.04.004</identifier><identifier>PMID: 21569861</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>1-Butanol - metabolism ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Biofuel ; Butanol ; Butyryl-CoA dehydrogenase ; Butyryl-CoA Dehydrogenase - biosynthesis ; Butyryl-CoA Dehydrogenase - genetics ; Carbohydrates ; Carbon dioxide ; Carbon Dioxide - metabolism ; Clostridium ; Clostridium acetobutylicum ; Clostridium acetobutylicum - enzymology ; Clostridium acetobutylicum - genetics ; Cyanobacteria ; Energy ; Enzymes ; Fatty Acid Desaturases - biosynthesis ; Fatty Acid Desaturases - genetics ; Fermentation ; Ferredoxin ; Fuels ; Genetic Engineering ; Integration ; Metabolic engineering ; NADH ; Organisms, Genetically Modified - genetics ; Organisms, Genetically Modified - metabolism ; Oxygen ; reductase ; Synechococcus - genetics ; Synechococcus - metabolism ; Synechococcus elongatus ; Synthetic biology ; Treponema denticola ; Treponema denticola - enzymology ; Treponema denticola - genetics</subject><ispartof>Metabolic engineering, 2011-07, Vol.13 (4), p.353-363</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-4ad1afd51442b1773e9b05da310ba89f056bc01b7a4f042e67d6655a30fde6313</citedby><cites>FETCH-LOGICAL-c481t-4ad1afd51442b1773e9b05da310ba89f056bc01b7a4f042e67d6655a30fde6313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717611000474$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21569861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Ethan I.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><title>Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Production of chemicals and fuels directly from CO 2 is an attractive approach to solving the energy and environmental problems. 1-Butanol, a chemical feedstock and potential fuel, has been produced by fermentation of carbohydrates, both in native Clostridium species and various engineered hosts. To produce 1-butanol from CO 2, we transferred a modified CoA-dependent 1-butanol production pathway into a cyanobacterium, Synechococcus elongatus PCC 7942. We demonstrated the activity of each enzyme in the pathway by chromosomal integration and expression of the genes. In particular, Treponema denticola trans-enoyl-CoA reductase (Ter), which utilizes NADH as the reducing power, was used for the reduction of crotonyl-CoA to butyryl-CoA instead of Clostridium acetobutylicum butyryl-CoA dehydrogenase to by-pass the need of Clostridial ferredoxins. Addition of polyhistidine-tag increased the overall activity of Ter and resulted in higher 1-butanol production. Removal of oxygen is an important factor in the synthesis of 1-butanol in this organism. This result represents the first autotrophic 1-butanol production.</description><subject>1-Butanol - metabolism</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofuel</subject><subject>Butanol</subject><subject>Butyryl-CoA dehydrogenase</subject><subject>Butyryl-CoA Dehydrogenase - biosynthesis</subject><subject>Butyryl-CoA Dehydrogenase - genetics</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Clostridium</subject><subject>Clostridium acetobutylicum</subject><subject>Clostridium acetobutylicum - enzymology</subject><subject>Clostridium acetobutylicum - genetics</subject><subject>Cyanobacteria</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Fatty Acid Desaturases - biosynthesis</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fermentation</subject><subject>Ferredoxin</subject><subject>Fuels</subject><subject>Genetic Engineering</subject><subject>Integration</subject><subject>Metabolic engineering</subject><subject>NADH</subject><subject>Organisms, Genetically Modified - genetics</subject><subject>Organisms, Genetically Modified - metabolism</subject><subject>Oxygen</subject><subject>reductase</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus elongatus</subject><subject>Synthetic biology</subject><subject>Treponema denticola</subject><subject>Treponema denticola - enzymology</subject><subject>Treponema denticola - genetics</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3TAQRq2KqlDaX4AE2dFNUk_iR7JggVBfElUXlLXlx_jKV0kMdlJx_319eylLVh6NznweHxNyBrQBCuLzttlNBuempQANZQ2l7A05ATqIWkLPjl5qKY7J-5y3tIB8gHfkuAUuhl7ACbn7iYs2cQy2wnkTZsQU5k0VfWV3eo5G26V0dOVjqqA261KaY_WQolvtEuJc-RSnyupkSu1CfAoOP5C3Xo8ZPz6fp-T-65ffN9_r21_fftxc39aW9bDUTDvQ3nFgrDUgZYeDodzpDqjR_eApF8ZSMFIzT1mLQjohONcd9Q5FB90puTzklnUeV8yLmkK2OI56xrhm1cuWt7yjfSE_vUoWnwyolMM-tDugNsWcE3r1kMKk065Ae06orfrnXe29K8pU8V6mzp8vWM2E7mXmv-gCXBwAr6PSmxSyur8rCaJ8ihTleYW4OhBYlP0JmFS2AWeLLiS0i3IxvLrCX-9Nnb0</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lan, Ethan I.</creator><creator>Liao, James C.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide</title><author>Lan, Ethan I. ; Liao, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-4ad1afd51442b1773e9b05da310ba89f056bc01b7a4f042e67d6655a30fde6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-Butanol - metabolism</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofuel</topic><topic>Butanol</topic><topic>Butyryl-CoA dehydrogenase</topic><topic>Butyryl-CoA Dehydrogenase - biosynthesis</topic><topic>Butyryl-CoA Dehydrogenase - genetics</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Clostridium</topic><topic>Clostridium acetobutylicum</topic><topic>Clostridium acetobutylicum - enzymology</topic><topic>Clostridium acetobutylicum - genetics</topic><topic>Cyanobacteria</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Fatty Acid Desaturases - biosynthesis</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fermentation</topic><topic>Ferredoxin</topic><topic>Fuels</topic><topic>Genetic Engineering</topic><topic>Integration</topic><topic>Metabolic engineering</topic><topic>NADH</topic><topic>Organisms, Genetically Modified - genetics</topic><topic>Organisms, Genetically Modified - metabolism</topic><topic>Oxygen</topic><topic>reductase</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus elongatus</topic><topic>Synthetic biology</topic><topic>Treponema denticola</topic><topic>Treponema denticola - enzymology</topic><topic>Treponema denticola - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Ethan I.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Ethan I.</au><au>Liao, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>13</volume><issue>4</issue><spage>353</spage><epage>363</epage><pages>353-363</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Production of chemicals and fuels directly from CO 2 is an attractive approach to solving the energy and environmental problems. 1-Butanol, a chemical feedstock and potential fuel, has been produced by fermentation of carbohydrates, both in native Clostridium species and various engineered hosts. To produce 1-butanol from CO 2, we transferred a modified CoA-dependent 1-butanol production pathway into a cyanobacterium, Synechococcus elongatus PCC 7942. We demonstrated the activity of each enzyme in the pathway by chromosomal integration and expression of the genes. In particular, Treponema denticola trans-enoyl-CoA reductase (Ter), which utilizes NADH as the reducing power, was used for the reduction of crotonyl-CoA to butyryl-CoA instead of Clostridium acetobutylicum butyryl-CoA dehydrogenase to by-pass the need of Clostridial ferredoxins. Addition of polyhistidine-tag increased the overall activity of Ter and resulted in higher 1-butanol production. Removal of oxygen is an important factor in the synthesis of 1-butanol in this organism. This result represents the first autotrophic 1-butanol production.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>21569861</pmid><doi>10.1016/j.ymben.2011.04.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2011-07, Vol.13 (4), p.353-363
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_872525308
source MEDLINE; Elsevier ScienceDirect Journals
subjects 1-Butanol - metabolism
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Biofuel
Butanol
Butyryl-CoA dehydrogenase
Butyryl-CoA Dehydrogenase - biosynthesis
Butyryl-CoA Dehydrogenase - genetics
Carbohydrates
Carbon dioxide
Carbon Dioxide - metabolism
Clostridium
Clostridium acetobutylicum
Clostridium acetobutylicum - enzymology
Clostridium acetobutylicum - genetics
Cyanobacteria
Energy
Enzymes
Fatty Acid Desaturases - biosynthesis
Fatty Acid Desaturases - genetics
Fermentation
Ferredoxin
Fuels
Genetic Engineering
Integration
Metabolic engineering
NADH
Organisms, Genetically Modified - genetics
Organisms, Genetically Modified - metabolism
Oxygen
reductase
Synechococcus - genetics
Synechococcus - metabolism
Synechococcus elongatus
Synthetic biology
Treponema denticola
Treponema denticola - enzymology
Treponema denticola - genetics
title Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20cyanobacteria%20for%201-butanol%20production%20from%20carbon%20dioxide&rft.jtitle=Metabolic%20engineering&rft.au=Lan,%20Ethan%20I.&rft.date=2011-07-01&rft.volume=13&rft.issue=4&rft.spage=353&rft.epage=363&rft.pages=353-363&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2011.04.004&rft_dat=%3Cproquest_cross%3E872525308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014107791&rft_id=info:pmid/21569861&rft_els_id=S1096717611000474&rfr_iscdi=true