Carbon metabolism limits recombinant protein production in Pichia pastoris
The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinan...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2011-08, Vol.108 (8), p.1942-1953 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1953 |
---|---|
container_issue | 8 |
container_start_page | 1942 |
container_title | Biotechnology and bioengineering |
container_volume | 108 |
creator | Heyland, Jan Fu, Jianan Blank, Lars M. Schmid, Andreas |
description | The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.23114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872435371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017967611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModq0--A_IIIj1Ydqb78mjXbRWSi2y0seQZDKYOh_bJEPtf2-2u60gqE83F37nnFwOQi8xHGIAcmRDPiQUY_YILTAoWQNR8BgtAEDUlCuyh56ldFVW2QjxFO0RTDkGSRbo89JEO43V4LOxUx_SUPVhCDlV0btpsGE0Y67Wcco-jJvZzi6HIijbRXDfg6nWJuUphvQcPelMn_yL3dxH3z5-WC0_1WdfTk6X789qxxrOatq0mHhoLGssJ8xh5phVUqlOCq4UsZyLBhwj5Wm9YG1nTes6oFjIDkxL99HbrW_5zfXsU9ZDSM73vRn9NCfdSMIopxIX8uCfZHHEjIFqxP9RwFIJKfDG9fUf6NU0x7GcXKKZarAgpEDvtpCLU0rRd3odw2DibXHSm9J0KU3flVbYVzvD2Q6-fSDvWyrAmx1gkjN9F83oQvrNMUrLuVC4oy13E3p_-_dEfXy6uo-ut4qQsv_5oDDxhxaSSq4vz0_0OShyoS5X-iv9BfPJupE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874981622</pqid></control><display><type>article</type><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</creator><creatorcontrib>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</creatorcontrib><description>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.23114</identifier><identifier>PMID: 21351072</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>13C flux analysis ; amino acid biosynthetic cost ; Amino acids ; Amino Acids - metabolism ; Aminopeptidases - genetics ; Aminopeptidases - metabolism ; Biological and medical sciences ; Biotechnology ; Byproducts ; Carbon - metabolism ; Cells ; Crabtree ; Culture Media - chemistry ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; metabolic network analysis ; Metabolism ; off-gas analysis ; Optimization ; Pichia - genetics ; Pichia - metabolism ; Pichia pastoris ; Proteins ; Recombinant ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sphingomonadaceae - enzymology ; Sphingomonadaceae - genetics ; Strain ; Yeast</subject><ispartof>Biotechnology and bioengineering, 2011-08, Vol.108 (8), p.1942-1953</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</citedby><cites>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.23114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.23114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24333710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21351072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heyland, Jan</creatorcontrib><creatorcontrib>Fu, Jianan</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</description><subject>13C flux analysis</subject><subject>amino acid biosynthetic cost</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Aminopeptidases - genetics</subject><subject>Aminopeptidases - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Byproducts</subject><subject>Carbon - metabolism</subject><subject>Cells</subject><subject>Crabtree</subject><subject>Culture Media - chemistry</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>metabolic network analysis</subject><subject>Metabolism</subject><subject>off-gas analysis</subject><subject>Optimization</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Proteins</subject><subject>Recombinant</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sphingomonadaceae - enzymology</subject><subject>Sphingomonadaceae - genetics</subject><subject>Strain</subject><subject>Yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1rFDEUxYModq0--A_IIIj1Ydqb78mjXbRWSi2y0seQZDKYOh_bJEPtf2-2u60gqE83F37nnFwOQi8xHGIAcmRDPiQUY_YILTAoWQNR8BgtAEDUlCuyh56ldFVW2QjxFO0RTDkGSRbo89JEO43V4LOxUx_SUPVhCDlV0btpsGE0Y67Wcco-jJvZzi6HIijbRXDfg6nWJuUphvQcPelMn_yL3dxH3z5-WC0_1WdfTk6X789qxxrOatq0mHhoLGssJ8xh5phVUqlOCq4UsZyLBhwj5Wm9YG1nTes6oFjIDkxL99HbrW_5zfXsU9ZDSM73vRn9NCfdSMIopxIX8uCfZHHEjIFqxP9RwFIJKfDG9fUf6NU0x7GcXKKZarAgpEDvtpCLU0rRd3odw2DibXHSm9J0KU3flVbYVzvD2Q6-fSDvWyrAmx1gkjN9F83oQvrNMUrLuVC4oy13E3p_-_dEfXy6uo-ut4qQsv_5oDDxhxaSSq4vz0_0OShyoS5X-iv9BfPJupE</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Heyland, Jan</creator><creator>Fu, Jianan</creator><creator>Blank, Lars M.</creator><creator>Schmid, Andreas</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><author>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>13C flux analysis</topic><topic>amino acid biosynthetic cost</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Aminopeptidases - genetics</topic><topic>Aminopeptidases - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Byproducts</topic><topic>Carbon - metabolism</topic><topic>Cells</topic><topic>Crabtree</topic><topic>Culture Media - chemistry</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>metabolic network analysis</topic><topic>Metabolism</topic><topic>off-gas analysis</topic><topic>Optimization</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Proteins</topic><topic>Recombinant</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sphingomonadaceae - enzymology</topic><topic>Sphingomonadaceae - genetics</topic><topic>Strain</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyland, Jan</creatorcontrib><creatorcontrib>Fu, Jianan</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyland, Jan</au><au>Fu, Jianan</au><au>Blank, Lars M.</au><au>Schmid, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon metabolism limits recombinant protein production in Pichia pastoris</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2011-08</date><risdate>2011</risdate><volume>108</volume><issue>8</issue><spage>1942</spage><epage>1953</epage><pages>1942-1953</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21351072</pmid><doi>10.1002/bit.23114</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2011-08, Vol.108 (8), p.1942-1953 |
issn | 0006-3592 1097-0290 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_872435371 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | 13C flux analysis amino acid biosynthetic cost Amino acids Amino Acids - metabolism Aminopeptidases - genetics Aminopeptidases - metabolism Biological and medical sciences Biotechnology Byproducts Carbon - metabolism Cells Crabtree Culture Media - chemistry Energy Metabolism Fundamental and applied biological sciences. Psychology metabolic network analysis Metabolism off-gas analysis Optimization Pichia - genetics Pichia - metabolism Pichia pastoris Proteins Recombinant Recombinant Proteins - genetics Recombinant Proteins - metabolism Sphingomonadaceae - enzymology Sphingomonadaceae - genetics Strain Yeast |
title | Carbon metabolism limits recombinant protein production in Pichia pastoris |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20metabolism%20limits%20recombinant%20protein%20production%20in%20Pichia%20pastoris&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Heyland,%20Jan&rft.date=2011-08&rft.volume=108&rft.issue=8&rft.spage=1942&rft.epage=1953&rft.pages=1942-1953&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.23114&rft_dat=%3Cproquest_cross%3E1017967611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874981622&rft_id=info:pmid/21351072&rfr_iscdi=true |