Carbon metabolism limits recombinant protein production in Pichia pastoris

The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2011-08, Vol.108 (8), p.1942-1953
Hauptverfasser: Heyland, Jan, Fu, Jianan, Blank, Lars M., Schmid, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1953
container_issue 8
container_start_page 1942
container_title Biotechnology and bioengineering
container_volume 108
creator Heyland, Jan
Fu, Jianan
Blank, Lars M.
Schmid, Andreas
description The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.23114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872435371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017967611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModq0--A_IIIj1Ydqb78mjXbRWSi2y0seQZDKYOh_bJEPtf2-2u60gqE83F37nnFwOQi8xHGIAcmRDPiQUY_YILTAoWQNR8BgtAEDUlCuyh56ldFVW2QjxFO0RTDkGSRbo89JEO43V4LOxUx_SUPVhCDlV0btpsGE0Y67Wcco-jJvZzi6HIijbRXDfg6nWJuUphvQcPelMn_yL3dxH3z5-WC0_1WdfTk6X789qxxrOatq0mHhoLGssJ8xh5phVUqlOCq4UsZyLBhwj5Wm9YG1nTes6oFjIDkxL99HbrW_5zfXsU9ZDSM73vRn9NCfdSMIopxIX8uCfZHHEjIFqxP9RwFIJKfDG9fUf6NU0x7GcXKKZarAgpEDvtpCLU0rRd3odw2DibXHSm9J0KU3flVbYVzvD2Q6-fSDvWyrAmx1gkjN9F83oQvrNMUrLuVC4oy13E3p_-_dEfXy6uo-ut4qQsv_5oDDxhxaSSq4vz0_0OShyoS5X-iv9BfPJupE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>874981622</pqid></control><display><type>article</type><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</creator><creatorcontrib>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</creatorcontrib><description>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.23114</identifier><identifier>PMID: 21351072</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>13C flux analysis ; amino acid biosynthetic cost ; Amino acids ; Amino Acids - metabolism ; Aminopeptidases - genetics ; Aminopeptidases - metabolism ; Biological and medical sciences ; Biotechnology ; Byproducts ; Carbon - metabolism ; Cells ; Crabtree ; Culture Media - chemistry ; Energy Metabolism ; Fundamental and applied biological sciences. Psychology ; metabolic network analysis ; Metabolism ; off-gas analysis ; Optimization ; Pichia - genetics ; Pichia - metabolism ; Pichia pastoris ; Proteins ; Recombinant ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sphingomonadaceae - enzymology ; Sphingomonadaceae - genetics ; Strain ; Yeast</subject><ispartof>Biotechnology and bioengineering, 2011-08, Vol.108 (8), p.1942-1953</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</citedby><cites>FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.23114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.23114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24333710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21351072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heyland, Jan</creatorcontrib><creatorcontrib>Fu, Jianan</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</description><subject>13C flux analysis</subject><subject>amino acid biosynthetic cost</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Aminopeptidases - genetics</subject><subject>Aminopeptidases - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Byproducts</subject><subject>Carbon - metabolism</subject><subject>Cells</subject><subject>Crabtree</subject><subject>Culture Media - chemistry</subject><subject>Energy Metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>metabolic network analysis</subject><subject>Metabolism</subject><subject>off-gas analysis</subject><subject>Optimization</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Proteins</subject><subject>Recombinant</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sphingomonadaceae - enzymology</subject><subject>Sphingomonadaceae - genetics</subject><subject>Strain</subject><subject>Yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1rFDEUxYModq0--A_IIIj1Ydqb78mjXbRWSi2y0seQZDKYOh_bJEPtf2-2u60gqE83F37nnFwOQi8xHGIAcmRDPiQUY_YILTAoWQNR8BgtAEDUlCuyh56ldFVW2QjxFO0RTDkGSRbo89JEO43V4LOxUx_SUPVhCDlV0btpsGE0Y67Wcco-jJvZzi6HIijbRXDfg6nWJuUphvQcPelMn_yL3dxH3z5-WC0_1WdfTk6X789qxxrOatq0mHhoLGssJ8xh5phVUqlOCq4UsZyLBhwj5Wm9YG1nTes6oFjIDkxL99HbrW_5zfXsU9ZDSM73vRn9NCfdSMIopxIX8uCfZHHEjIFqxP9RwFIJKfDG9fUf6NU0x7GcXKKZarAgpEDvtpCLU0rRd3odw2DibXHSm9J0KU3flVbYVzvD2Q6-fSDvWyrAmx1gkjN9F83oQvrNMUrLuVC4oy13E3p_-_dEfXy6uo-ut4qQsv_5oDDxhxaSSq4vz0_0OShyoS5X-iv9BfPJupE</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Heyland, Jan</creator><creator>Fu, Jianan</creator><creator>Blank, Lars M.</creator><creator>Schmid, Andreas</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Carbon metabolism limits recombinant protein production in Pichia pastoris</title><author>Heyland, Jan ; Fu, Jianan ; Blank, Lars M. ; Schmid, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4854-38d12e08b48b524c14c4b9799f765992b55680c4292bbe64dfbadcf03167f0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>13C flux analysis</topic><topic>amino acid biosynthetic cost</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Aminopeptidases - genetics</topic><topic>Aminopeptidases - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Byproducts</topic><topic>Carbon - metabolism</topic><topic>Cells</topic><topic>Crabtree</topic><topic>Culture Media - chemistry</topic><topic>Energy Metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>metabolic network analysis</topic><topic>Metabolism</topic><topic>off-gas analysis</topic><topic>Optimization</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Proteins</topic><topic>Recombinant</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sphingomonadaceae - enzymology</topic><topic>Sphingomonadaceae - genetics</topic><topic>Strain</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyland, Jan</creatorcontrib><creatorcontrib>Fu, Jianan</creatorcontrib><creatorcontrib>Blank, Lars M.</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyland, Jan</au><au>Fu, Jianan</au><au>Blank, Lars M.</au><au>Schmid, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon metabolism limits recombinant protein production in Pichia pastoris</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2011-08</date><risdate>2011</risdate><volume>108</volume><issue>8</issue><spage>1942</spage><epage>1953</epage><pages>1942-1953</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β‐aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by‐product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW−1 h−1 irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris. Biotechnol. Bioeng. 2011; 108:1942–1953. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21351072</pmid><doi>10.1002/bit.23114</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2011-08, Vol.108 (8), p.1942-1953
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_proquest_miscellaneous_872435371
source MEDLINE; Wiley Online Library All Journals
subjects 13C flux analysis
amino acid biosynthetic cost
Amino acids
Amino Acids - metabolism
Aminopeptidases - genetics
Aminopeptidases - metabolism
Biological and medical sciences
Biotechnology
Byproducts
Carbon - metabolism
Cells
Crabtree
Culture Media - chemistry
Energy Metabolism
Fundamental and applied biological sciences. Psychology
metabolic network analysis
Metabolism
off-gas analysis
Optimization
Pichia - genetics
Pichia - metabolism
Pichia pastoris
Proteins
Recombinant
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sphingomonadaceae - enzymology
Sphingomonadaceae - genetics
Strain
Yeast
title Carbon metabolism limits recombinant protein production in Pichia pastoris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20metabolism%20limits%20recombinant%20protein%20production%20in%20Pichia%20pastoris&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Heyland,%20Jan&rft.date=2011-08&rft.volume=108&rft.issue=8&rft.spage=1942&rft.epage=1953&rft.pages=1942-1953&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.23114&rft_dat=%3Cproquest_cross%3E1017967611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=874981622&rft_id=info:pmid/21351072&rfr_iscdi=true