A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations

The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-07, Vol.46 (1), p.224-230
Hauptverfasser: Ferrer, E., Willden, R.H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 1
container_start_page 224
container_title Computers & fluids
container_volume 46
creator Ferrer, E.
Willden, R.H.J.
description The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods. Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.
doi_str_mv 10.1016/j.compfluid.2010.10.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872142824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793010002860</els_id><sourcerecordid>872142824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</originalsourceid><addsrcrecordid>eNqFUEtOwzAUtBBIlMIZ8I5Vin-Nk2VV2oJUwQJYW4nzQt2mdms7ldhxB27ISUgoYsvq_WZGbwaha0pGlND0dj3Sbrurm9ZUI0Z-tiNCsxM0oJnMEyKFPEUDQsQ4kTkn5-gihDXpZs7EAK0neGXeVtj5Cjy-M0E7G41tXRvwomjAb4zFc2NNBDxrYAs24uCaQweuncdxBdjY_gEPIZiyAfxYHAz4r4_P5-g2EDDs2yIaZ8MlOquLJsDVbx2i1_nsZXqfLJ8WD9PJMtFcyJjAuBaCF3WpSZ6mwAkfp7lmUjIueEbrnMkqrfoG5LgkWQ55KSjVecbSrKYlH6Kbo-7Ou30LIaptZwuaprDQ2VKZZFSwjIkOKY9I7V0IHmq182Zb-HdFierDVWv1F67qw-0PXbgdc3JkQmek96uCNmA1VMaDjqpy5l-Nb7cFiYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872142824</pqid></control><display><type>article</type><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferrer, E. ; Willden, R.H.J.</creator><creatorcontrib>Ferrer, E. ; Willden, R.H.J.</creatorcontrib><description>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods. Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2010.10.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Cylinders ; Discontinuous Galerkin ; Fluid flow ; Galerkin methods ; High order ; Incompressible Navier–Stokes ; Mathematical analysis ; Modal basis ; Navier-Stokes equations ; Solvers ; Splitting method ; Symmetric Interior Penalty Galerkin ; Unsteady</subject><ispartof>Computers &amp; fluids, 2011-07, Vol.46 (1), p.224-230</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</citedby><cites>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2010.10.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Willden, R.H.J.</creatorcontrib><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><title>Computers &amp; fluids</title><description>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods. Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</description><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Discontinuous Galerkin</subject><subject>Fluid flow</subject><subject>Galerkin methods</subject><subject>High order</subject><subject>Incompressible Navier–Stokes</subject><subject>Mathematical analysis</subject><subject>Modal basis</subject><subject>Navier-Stokes equations</subject><subject>Solvers</subject><subject>Splitting method</subject><subject>Symmetric Interior Penalty Galerkin</subject><subject>Unsteady</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUEtOwzAUtBBIlMIZ8I5Vin-Nk2VV2oJUwQJYW4nzQt2mdms7ldhxB27ISUgoYsvq_WZGbwaha0pGlND0dj3Sbrurm9ZUI0Z-tiNCsxM0oJnMEyKFPEUDQsQ4kTkn5-gihDXpZs7EAK0neGXeVtj5Cjy-M0E7G41tXRvwomjAb4zFc2NNBDxrYAs24uCaQweuncdxBdjY_gEPIZiyAfxYHAz4r4_P5-g2EDDs2yIaZ8MlOquLJsDVbx2i1_nsZXqfLJ8WD9PJMtFcyJjAuBaCF3WpSZ6mwAkfp7lmUjIueEbrnMkqrfoG5LgkWQ55KSjVecbSrKYlH6Kbo-7Ou30LIaptZwuaprDQ2VKZZFSwjIkOKY9I7V0IHmq182Zb-HdFierDVWv1F67qw-0PXbgdc3JkQmek96uCNmA1VMaDjqpy5l-Nb7cFiYk</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Ferrer, E.</creator><creator>Willden, R.H.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><author>Ferrer, E. ; Willden, R.H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Discontinuous Galerkin</topic><topic>Fluid flow</topic><topic>Galerkin methods</topic><topic>High order</topic><topic>Incompressible Navier–Stokes</topic><topic>Mathematical analysis</topic><topic>Modal basis</topic><topic>Navier-Stokes equations</topic><topic>Solvers</topic><topic>Splitting method</topic><topic>Symmetric Interior Penalty Galerkin</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Willden, R.H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, E.</au><au>Willden, R.H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</atitle><jtitle>Computers &amp; fluids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>46</volume><issue>1</issue><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods. Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2010.10.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2011-07, Vol.46 (1), p.224-230
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_872142824
source ScienceDirect Journals (5 years ago - present)
subjects Computational fluid dynamics
Cylinders
Discontinuous Galerkin
Fluid flow
Galerkin methods
High order
Incompressible Navier–Stokes
Mathematical analysis
Modal basis
Navier-Stokes equations
Solvers
Splitting method
Symmetric Interior Penalty Galerkin
Unsteady
title A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20order%20Discontinuous%20Galerkin%20Finite%20Element%20solver%20for%20the%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Computers%20&%20fluids&rft.au=Ferrer,%20E.&rft.date=2011-07-01&rft.volume=46&rft.issue=1&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2010.10.018&rft_dat=%3Cproquest_cross%3E872142824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872142824&rft_id=info:pmid/&rft_els_id=S0045793010002860&rfr_iscdi=true