A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations
The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discr...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-07, Vol.46 (1), p.224-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 1 |
container_start_page | 224 |
container_title | Computers & fluids |
container_volume | 46 |
creator | Ferrer, E. Willden, R.H.J. |
description | The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods.
Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code. |
doi_str_mv | 10.1016/j.compfluid.2010.10.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872142824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793010002860</els_id><sourcerecordid>872142824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</originalsourceid><addsrcrecordid>eNqFUEtOwzAUtBBIlMIZ8I5Vin-Nk2VV2oJUwQJYW4nzQt2mdms7ldhxB27ISUgoYsvq_WZGbwaha0pGlND0dj3Sbrurm9ZUI0Z-tiNCsxM0oJnMEyKFPEUDQsQ4kTkn5-gihDXpZs7EAK0neGXeVtj5Cjy-M0E7G41tXRvwomjAb4zFc2NNBDxrYAs24uCaQweuncdxBdjY_gEPIZiyAfxYHAz4r4_P5-g2EDDs2yIaZ8MlOquLJsDVbx2i1_nsZXqfLJ8WD9PJMtFcyJjAuBaCF3WpSZ6mwAkfp7lmUjIueEbrnMkqrfoG5LgkWQ55KSjVecbSrKYlH6Kbo-7Ou30LIaptZwuaprDQ2VKZZFSwjIkOKY9I7V0IHmq182Zb-HdFierDVWv1F67qw-0PXbgdc3JkQmek96uCNmA1VMaDjqpy5l-Nb7cFiYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872142824</pqid></control><display><type>article</type><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferrer, E. ; Willden, R.H.J.</creator><creatorcontrib>Ferrer, E. ; Willden, R.H.J.</creatorcontrib><description>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods.
Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2010.10.018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Cylinders ; Discontinuous Galerkin ; Fluid flow ; Galerkin methods ; High order ; Incompressible Navier–Stokes ; Mathematical analysis ; Modal basis ; Navier-Stokes equations ; Solvers ; Splitting method ; Symmetric Interior Penalty Galerkin ; Unsteady</subject><ispartof>Computers & fluids, 2011-07, Vol.46 (1), p.224-230</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</citedby><cites>FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2010.10.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Willden, R.H.J.</creatorcontrib><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><title>Computers & fluids</title><description>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods.
Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</description><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Discontinuous Galerkin</subject><subject>Fluid flow</subject><subject>Galerkin methods</subject><subject>High order</subject><subject>Incompressible Navier–Stokes</subject><subject>Mathematical analysis</subject><subject>Modal basis</subject><subject>Navier-Stokes equations</subject><subject>Solvers</subject><subject>Splitting method</subject><subject>Symmetric Interior Penalty Galerkin</subject><subject>Unsteady</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUEtOwzAUtBBIlMIZ8I5Vin-Nk2VV2oJUwQJYW4nzQt2mdms7ldhxB27ISUgoYsvq_WZGbwaha0pGlND0dj3Sbrurm9ZUI0Z-tiNCsxM0oJnMEyKFPEUDQsQ4kTkn5-gihDXpZs7EAK0neGXeVtj5Cjy-M0E7G41tXRvwomjAb4zFc2NNBDxrYAs24uCaQweuncdxBdjY_gEPIZiyAfxYHAz4r4_P5-g2EDDs2yIaZ8MlOquLJsDVbx2i1_nsZXqfLJ8WD9PJMtFcyJjAuBaCF3WpSZ6mwAkfp7lmUjIueEbrnMkqrfoG5LgkWQ55KSjVecbSrKYlH6Kbo-7Ou30LIaptZwuaprDQ2VKZZFSwjIkOKY9I7V0IHmq182Zb-HdFierDVWv1F67qw-0PXbgdc3JkQmek96uCNmA1VMaDjqpy5l-Nb7cFiYk</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Ferrer, E.</creator><creator>Willden, R.H.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</title><author>Ferrer, E. ; Willden, R.H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e5f443afbc0966e303569c277234381f927d6d81f9e75b089e9b411c98268f1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Discontinuous Galerkin</topic><topic>Fluid flow</topic><topic>Galerkin methods</topic><topic>High order</topic><topic>Incompressible Navier–Stokes</topic><topic>Mathematical analysis</topic><topic>Modal basis</topic><topic>Navier-Stokes equations</topic><topic>Solvers</topic><topic>Splitting method</topic><topic>Symmetric Interior Penalty Galerkin</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, E.</creatorcontrib><creatorcontrib>Willden, R.H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, E.</au><au>Willden, R.H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations</atitle><jtitle>Computers & fluids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>46</volume><issue>1</issue><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>The paper presents an unsteady high order Discontinuous Galerkin (DG) solver that has been developed, verified and validated for the solution of the two-dimensional incompressible Navier–Stokes equations. A second order stiffly stable method is used to discretise the equations in time. Spatial discretisation is accomplished using a modal DG approach, in which the inter-element fluxes are approximated using the Symmetric Interior Penalty Galerkin formulation. The non-linear terms in the Navier–Stokes equations are expressed in the convective form and approximated through the Lesaint–Raviart fluxes modified for DG methods.
Verification of the solver is performed for a series of test problems; purely elliptic, unsteady Stokes and full Navier–Stokes. The resulting method leads to a stable scheme for the unsteady Stokes and Navier–Stokes equations when equal order approximation is used for velocity and pressure. For the validation of the full Navier–Stokes solver, we consider unsteady laminar flow past a square cylinder at a Reynolds number of 100 (unsteady wake). The DG solver shows favourably comparisons to experimental data and a continuous Spectral code.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2010.10.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2011-07, Vol.46 (1), p.224-230 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_872142824 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computational fluid dynamics Cylinders Discontinuous Galerkin Fluid flow Galerkin methods High order Incompressible Navier–Stokes Mathematical analysis Modal basis Navier-Stokes equations Solvers Splitting method Symmetric Interior Penalty Galerkin Unsteady |
title | A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20order%20Discontinuous%20Galerkin%20Finite%20Element%20solver%20for%20the%20incompressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Computers%20&%20fluids&rft.au=Ferrer,%20E.&rft.date=2011-07-01&rft.volume=46&rft.issue=1&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2010.10.018&rft_dat=%3Cproquest_cross%3E872142824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872142824&rft_id=info:pmid/&rft_els_id=S0045793010002860&rfr_iscdi=true |