Inflow-Driven Valve System for Pulse Detonation Engines
A new valve system for a pulse detonation engine that uses a simple inflow-driven piston-interrupting valve is proposed. This valve can generate an intermittent flow by using gas enthalpy, so no power source or control unit is necessary. The mass flow per valve unit mass is comparatively large, the...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2011-05, Vol.27 (3), p.597-607 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | 3 |
container_start_page | 597 |
container_title | Journal of propulsion and power |
container_volume | 27 |
creator | Matsuoka, Ken Yageta, Jun Nakamichi, Tatsuya Kasahara, Jiro Yajima, Takashi Kojima, Takayuki |
description | A new valve system for a pulse detonation engine that uses a simple inflow-driven piston-interrupting valve is proposed. This valve can generate an intermittent flow by using gas enthalpy, so no power source or control unit is necessary. The mass flow per valve unit mass is comparatively large, the thrust change with changing supply pressure is very responsive, and the inflow supply pressure range for stable operation is wide. In a mass flow rate measurement experiment using a single-piston inflow-driven valve, the operation frequency and mass flow rate were predictable. In a thrust measurement experiment with a pulse detonation rocket engine using a three-piston inflow-driven valve, the pulse detonation engine's stable operation over a wide range of supply pressure was confirmed and the time-averaged thrust was measured. The maximum time-averaged thrust of 22.6 N was achieved at a fuel (ethylene) supply pressure of 0.95 MPa and an oxygen supply pressure of 1.9 MPa. The maximum specific impulse of 279 s was achieved at an ethylene supply pressure of 0.8 MPa and an oxygen supply pressure of 1.6 MPa. [PUBLISHER ABSTRACT] |
doi_str_mv | 10.2514/1.47421 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_872142109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957620131</sourcerecordid><originalsourceid>FETCH-LOGICAL-p215t-550317237010c92c4c674f0c9e4adc2aa08b8df3853edf31bac71657ee1bc5713</originalsourceid><addsrcrecordid>eNpdj0tLw0AUhQdRMFbxLwRcuEqdO687XUofWigo-NiGyfRGUtKZmkkq_nsDunJ1DpyPwzmMXQOfCg3qDqYKlYATloGWspAWzSnLOCpbKKPtObtIacc5GGswY7gOdRu_ikXXHCnk7649Uv7ynXra53Xs8uehTZQvqI_B9U0M-TJ8NIHSJTur3Rhd_emEva2Wr_PHYvP0sJ7fb4qDAN0XWnMJKCRy4H4mvPIGVT1aUm7rhXPcVnZbS6sljQKV8whGIxFUXiPICbv97T108XOg1Jf7JnlqWxcoDqm0KGB8y2cjefOP3MWhC-O4EqQyViOXQv4AS3BTFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346857032</pqid></control><display><type>article</type><title>Inflow-Driven Valve System for Pulse Detonation Engines</title><source>Alma/SFX Local Collection</source><creator>Matsuoka, Ken ; Yageta, Jun ; Nakamichi, Tatsuya ; Kasahara, Jiro ; Yajima, Takashi ; Kojima, Takayuki</creator><contributor>Powers, J</contributor><creatorcontrib>Matsuoka, Ken ; Yageta, Jun ; Nakamichi, Tatsuya ; Kasahara, Jiro ; Yajima, Takashi ; Kojima, Takayuki ; Powers, J</creatorcontrib><description>A new valve system for a pulse detonation engine that uses a simple inflow-driven piston-interrupting valve is proposed. This valve can generate an intermittent flow by using gas enthalpy, so no power source or control unit is necessary. The mass flow per valve unit mass is comparatively large, the thrust change with changing supply pressure is very responsive, and the inflow supply pressure range for stable operation is wide. In a mass flow rate measurement experiment using a single-piston inflow-driven valve, the operation frequency and mass flow rate were predictable. In a thrust measurement experiment with a pulse detonation rocket engine using a three-piston inflow-driven valve, the pulse detonation engine's stable operation over a wide range of supply pressure was confirmed and the time-averaged thrust was measured. The maximum time-averaged thrust of 22.6 N was achieved at a fuel (ethylene) supply pressure of 0.95 MPa and an oxygen supply pressure of 1.9 MPa. The maximum specific impulse of 279 s was achieved at an ethylene supply pressure of 0.8 MPa and an oxygen supply pressure of 1.6 MPa. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.47421</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Detonation ; Ethylene ; Mass flow rate ; Pulsed detonation wave engines ; Rockets ; Specific impulse ; Thrust ; Valves</subject><ispartof>Journal of propulsion and power, 2011-05, Vol.27 (3), p.597-607</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics May-Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Powers, J</contributor><creatorcontrib>Matsuoka, Ken</creatorcontrib><creatorcontrib>Yageta, Jun</creatorcontrib><creatorcontrib>Nakamichi, Tatsuya</creatorcontrib><creatorcontrib>Kasahara, Jiro</creatorcontrib><creatorcontrib>Yajima, Takashi</creatorcontrib><creatorcontrib>Kojima, Takayuki</creatorcontrib><title>Inflow-Driven Valve System for Pulse Detonation Engines</title><title>Journal of propulsion and power</title><description>A new valve system for a pulse detonation engine that uses a simple inflow-driven piston-interrupting valve is proposed. This valve can generate an intermittent flow by using gas enthalpy, so no power source or control unit is necessary. The mass flow per valve unit mass is comparatively large, the thrust change with changing supply pressure is very responsive, and the inflow supply pressure range for stable operation is wide. In a mass flow rate measurement experiment using a single-piston inflow-driven valve, the operation frequency and mass flow rate were predictable. In a thrust measurement experiment with a pulse detonation rocket engine using a three-piston inflow-driven valve, the pulse detonation engine's stable operation over a wide range of supply pressure was confirmed and the time-averaged thrust was measured. The maximum time-averaged thrust of 22.6 N was achieved at a fuel (ethylene) supply pressure of 0.95 MPa and an oxygen supply pressure of 1.9 MPa. The maximum specific impulse of 279 s was achieved at an ethylene supply pressure of 0.8 MPa and an oxygen supply pressure of 1.6 MPa. [PUBLISHER ABSTRACT]</description><subject>Detonation</subject><subject>Ethylene</subject><subject>Mass flow rate</subject><subject>Pulsed detonation wave engines</subject><subject>Rockets</subject><subject>Specific impulse</subject><subject>Thrust</subject><subject>Valves</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLw0AUhQdRMFbxLwRcuEqdO687XUofWigo-NiGyfRGUtKZmkkq_nsDunJ1DpyPwzmMXQOfCg3qDqYKlYATloGWspAWzSnLOCpbKKPtObtIacc5GGswY7gOdRu_ikXXHCnk7649Uv7ynXra53Xs8uehTZQvqI_B9U0M-TJ8NIHSJTur3Rhd_emEva2Wr_PHYvP0sJ7fb4qDAN0XWnMJKCRy4H4mvPIGVT1aUm7rhXPcVnZbS6sljQKV8whGIxFUXiPICbv97T108XOg1Jf7JnlqWxcoDqm0KGB8y2cjefOP3MWhC-O4EqQyViOXQv4AS3BTFA</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Matsuoka, Ken</creator><creator>Yageta, Jun</creator><creator>Nakamichi, Tatsuya</creator><creator>Kasahara, Jiro</creator><creator>Yajima, Takashi</creator><creator>Kojima, Takayuki</creator><general>American Institute of Aeronautics and Astronautics</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Inflow-Driven Valve System for Pulse Detonation Engines</title><author>Matsuoka, Ken ; Yageta, Jun ; Nakamichi, Tatsuya ; Kasahara, Jiro ; Yajima, Takashi ; Kojima, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p215t-550317237010c92c4c674f0c9e4adc2aa08b8df3853edf31bac71657ee1bc5713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Detonation</topic><topic>Ethylene</topic><topic>Mass flow rate</topic><topic>Pulsed detonation wave engines</topic><topic>Rockets</topic><topic>Specific impulse</topic><topic>Thrust</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuoka, Ken</creatorcontrib><creatorcontrib>Yageta, Jun</creatorcontrib><creatorcontrib>Nakamichi, Tatsuya</creatorcontrib><creatorcontrib>Kasahara, Jiro</creatorcontrib><creatorcontrib>Yajima, Takashi</creatorcontrib><creatorcontrib>Kojima, Takayuki</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuoka, Ken</au><au>Yageta, Jun</au><au>Nakamichi, Tatsuya</au><au>Kasahara, Jiro</au><au>Yajima, Takashi</au><au>Kojima, Takayuki</au><au>Powers, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflow-Driven Valve System for Pulse Detonation Engines</atitle><jtitle>Journal of propulsion and power</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>27</volume><issue>3</issue><spage>597</spage><epage>607</epage><pages>597-607</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>A new valve system for a pulse detonation engine that uses a simple inflow-driven piston-interrupting valve is proposed. This valve can generate an intermittent flow by using gas enthalpy, so no power source or control unit is necessary. The mass flow per valve unit mass is comparatively large, the thrust change with changing supply pressure is very responsive, and the inflow supply pressure range for stable operation is wide. In a mass flow rate measurement experiment using a single-piston inflow-driven valve, the operation frequency and mass flow rate were predictable. In a thrust measurement experiment with a pulse detonation rocket engine using a three-piston inflow-driven valve, the pulse detonation engine's stable operation over a wide range of supply pressure was confirmed and the time-averaged thrust was measured. The maximum time-averaged thrust of 22.6 N was achieved at a fuel (ethylene) supply pressure of 0.95 MPa and an oxygen supply pressure of 1.9 MPa. The maximum specific impulse of 279 s was achieved at an ethylene supply pressure of 0.8 MPa and an oxygen supply pressure of 1.6 MPa. [PUBLISHER ABSTRACT]</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.47421</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2011-05, Vol.27 (3), p.597-607 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_proquest_miscellaneous_872142109 |
source | Alma/SFX Local Collection |
subjects | Detonation Ethylene Mass flow rate Pulsed detonation wave engines Rockets Specific impulse Thrust Valves |
title | Inflow-Driven Valve System for Pulse Detonation Engines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflow-Driven%20Valve%20System%20for%20Pulse%20Detonation%20Engines&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Matsuoka,%20Ken&rft.date=2011-05-01&rft.volume=27&rft.issue=3&rft.spage=597&rft.epage=607&rft.pages=597-607&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.47421&rft_dat=%3Cproquest%3E2957620131%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346857032&rft_id=info:pmid/&rfr_iscdi=true |