Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology

Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2011-04, Vol.35 (3), p.179-185
Hauptverfasser: Li, Qingli, Wang, Yiting, Liu, Hongying, Guan, Yana, Xu, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 3
container_start_page 179
container_title Computerized medical imaging and graphics
container_volume 35
creator Li, Qingli
Wang, Yiting
Liu, Hongying
Guan, Yana
Xu, Liang
description Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.
doi_str_mv 10.1016/j.compmedimag.2010.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872135635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611110001059</els_id><sourcerecordid>872135635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EokvLK6Bw4pTFYztxfEFCK6BIlXpoe7YcZ3bXixMHO6m6b4_TLQhxKSdbM__8M_48hLwHugYK9cfD2oZ-7LFzvdmtGX2MrymFF2QFjVQllRJekhVtVFXWAHBG3qR0oJQyKuE1OWNAeb43K3J3M7feDbvZ-OIe3VDgwxSNnVwYCuN3Ibpp3xetSdgVObQ_jhjTiDaLfDGFXIjFMkW2KCa0-yH4sDtekFdb4xO-fTrPyd3XL7eby_Lq-tv3zeer0lZMTaXivKu5MqrisBWqs0JI5MLUctsyATynRCU6qSgIVletkKoVNUeOqrGcIT8nH06-Yww_Z0yT7l2y6L0ZMMxJN5IBr2pePa-sJGsUFSor1UlpY0gp4laPMb8wHjVQveDXB_0Xfr3gX1IZf65999RlbnP-T-Vv3lmwOQkwU7l3GHWyDgebvWKGqrvg_qvNp39cbP5DZ43_gUdMhzDHIWPXoBPTVN8se7CsAeQNAFop_gukzbDV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857289049</pqid></control><display><type>article</type><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</creator><creatorcontrib>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</creatorcontrib><description>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2010.10.001</identifier><identifier>PMID: 21030208</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Biotechnology - methods ; Color ; Hidden Markov model ; Humans ; Hyperspectral imaging ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Internal Medicine ; Other ; Pattern Recognition, Automated - methods ; Photography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Sublingual veins ; Tongue - blood supply ; Veins - anatomy &amp; histology</subject><ispartof>Computerized medical imaging and graphics, 2011-04, Vol.35 (3), p.179-185</ispartof><rights>2010</rights><rights>Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</citedby><cites>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0895611110001059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21030208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qingli</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Guan, Yana</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biotechnology - methods</subject><subject>Color</subject><subject>Hidden Markov model</subject><subject>Humans</subject><subject>Hyperspectral imaging</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Other</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sublingual veins</subject><subject>Tongue - blood supply</subject><subject>Veins - anatomy &amp; histology</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNksFu1DAQhi0EokvLK6Bw4pTFYztxfEFCK6BIlXpoe7YcZ3bXixMHO6m6b4_TLQhxKSdbM__8M_48hLwHugYK9cfD2oZ-7LFzvdmtGX2MrymFF2QFjVQllRJekhVtVFXWAHBG3qR0oJQyKuE1OWNAeb43K3J3M7feDbvZ-OIe3VDgwxSNnVwYCuN3Ibpp3xetSdgVObQ_jhjTiDaLfDGFXIjFMkW2KCa0-yH4sDtekFdb4xO-fTrPyd3XL7eby_Lq-tv3zeer0lZMTaXivKu5MqrisBWqs0JI5MLUctsyATynRCU6qSgIVletkKoVNUeOqrGcIT8nH06-Yww_Z0yT7l2y6L0ZMMxJN5IBr2pePa-sJGsUFSor1UlpY0gp4laPMb8wHjVQveDXB_0Xfr3gX1IZf65999RlbnP-T-Vv3lmwOQkwU7l3GHWyDgebvWKGqrvg_qvNp39cbP5DZ43_gUdMhzDHIWPXoBPTVN8se7CsAeQNAFop_gukzbDV</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Li, Qingli</creator><creator>Wang, Yiting</creator><creator>Liu, Hongying</creator><creator>Guan, Yana</creator><creator>Xu, Liang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110401</creationdate><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><author>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biotechnology - methods</topic><topic>Color</topic><topic>Hidden Markov model</topic><topic>Humans</topic><topic>Hyperspectral imaging</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Other</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sublingual veins</topic><topic>Tongue - blood supply</topic><topic>Veins - anatomy &amp; histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qingli</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Guan, Yana</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qingli</au><au>Wang, Yiting</au><au>Liu, Hongying</au><au>Guan, Yana</au><au>Xu, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>35</volume><issue>3</issue><spage>179</spage><epage>185</epage><pages>179-185</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>21030208</pmid><doi>10.1016/j.compmedimag.2010.10.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2011-04, Vol.35 (3), p.179-185
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_872135635
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Artificial Intelligence
Biotechnology - methods
Color
Hidden Markov model
Humans
Hyperspectral imaging
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Internal Medicine
Other
Pattern Recognition, Automated - methods
Photography - methods
Reproducibility of Results
Sensitivity and Specificity
Sublingual veins
Tongue - blood supply
Veins - anatomy & histology
title Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublingual%20vein%20extraction%20algorithm%20based%20on%20hyperspectral%20tongue%20imaging%20technology&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Li,%20Qingli&rft.date=2011-04-01&rft.volume=35&rft.issue=3&rft.spage=179&rft.epage=185&rft.pages=179-185&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2010.10.001&rft_dat=%3Cproquest_cross%3E872135635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857289049&rft_id=info:pmid/21030208&rft_els_id=S0895611110001059&rfr_iscdi=true