Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology
Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2011-04, Vol.35 (3), p.179-185 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 3 |
container_start_page | 179 |
container_title | Computerized medical imaging and graphics |
container_volume | 35 |
creator | Li, Qingli Wang, Yiting Liu, Hongying Guan, Yana Xu, Liang |
description | Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment. |
doi_str_mv | 10.1016/j.compmedimag.2010.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_872135635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611110001059</els_id><sourcerecordid>872135635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</originalsourceid><addsrcrecordid>eNqNksFu1DAQhi0EokvLK6Bw4pTFYztxfEFCK6BIlXpoe7YcZ3bXixMHO6m6b4_TLQhxKSdbM__8M_48hLwHugYK9cfD2oZ-7LFzvdmtGX2MrymFF2QFjVQllRJekhVtVFXWAHBG3qR0oJQyKuE1OWNAeb43K3J3M7feDbvZ-OIe3VDgwxSNnVwYCuN3Ibpp3xetSdgVObQ_jhjTiDaLfDGFXIjFMkW2KCa0-yH4sDtekFdb4xO-fTrPyd3XL7eby_Lq-tv3zeer0lZMTaXivKu5MqrisBWqs0JI5MLUctsyATynRCU6qSgIVletkKoVNUeOqrGcIT8nH06-Yww_Z0yT7l2y6L0ZMMxJN5IBr2pePa-sJGsUFSor1UlpY0gp4laPMb8wHjVQveDXB_0Xfr3gX1IZf65999RlbnP-T-Vv3lmwOQkwU7l3GHWyDgebvWKGqrvg_qvNp39cbP5DZ43_gUdMhzDHIWPXoBPTVN8se7CsAeQNAFop_gukzbDV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857289049</pqid></control><display><type>article</type><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</creator><creatorcontrib>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</creatorcontrib><description>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2010.10.001</identifier><identifier>PMID: 21030208</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Biotechnology - methods ; Color ; Hidden Markov model ; Humans ; Hyperspectral imaging ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Internal Medicine ; Other ; Pattern Recognition, Automated - methods ; Photography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Sublingual veins ; Tongue - blood supply ; Veins - anatomy & histology</subject><ispartof>Computerized medical imaging and graphics, 2011-04, Vol.35 (3), p.179-185</ispartof><rights>2010</rights><rights>Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</citedby><cites>FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0895611110001059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21030208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qingli</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Guan, Yana</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biotechnology - methods</subject><subject>Color</subject><subject>Hidden Markov model</subject><subject>Humans</subject><subject>Hyperspectral imaging</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Other</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sublingual veins</subject><subject>Tongue - blood supply</subject><subject>Veins - anatomy & histology</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNksFu1DAQhi0EokvLK6Bw4pTFYztxfEFCK6BIlXpoe7YcZ3bXixMHO6m6b4_TLQhxKSdbM__8M_48hLwHugYK9cfD2oZ-7LFzvdmtGX2MrymFF2QFjVQllRJekhVtVFXWAHBG3qR0oJQyKuE1OWNAeb43K3J3M7feDbvZ-OIe3VDgwxSNnVwYCuN3Ibpp3xetSdgVObQ_jhjTiDaLfDGFXIjFMkW2KCa0-yH4sDtekFdb4xO-fTrPyd3XL7eby_Lq-tv3zeer0lZMTaXivKu5MqrisBWqs0JI5MLUctsyATynRCU6qSgIVletkKoVNUeOqrGcIT8nH06-Yww_Z0yT7l2y6L0ZMMxJN5IBr2pePa-sJGsUFSor1UlpY0gp4laPMb8wHjVQveDXB_0Xfr3gX1IZf65999RlbnP-T-Vv3lmwOQkwU7l3GHWyDgebvWKGqrvg_qvNp39cbP5DZ43_gUdMhzDHIWPXoBPTVN8se7CsAeQNAFop_gukzbDV</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Li, Qingli</creator><creator>Wang, Yiting</creator><creator>Liu, Hongying</creator><creator>Guan, Yana</creator><creator>Xu, Liang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110401</creationdate><title>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</title><author>Li, Qingli ; Wang, Yiting ; Liu, Hongying ; Guan, Yana ; Xu, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-933d639a9531f49dc447e34a67fb241339a454d79014265b479b463e3e98c32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biotechnology - methods</topic><topic>Color</topic><topic>Hidden Markov model</topic><topic>Humans</topic><topic>Hyperspectral imaging</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Other</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sublingual veins</topic><topic>Tongue - blood supply</topic><topic>Veins - anatomy & histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qingli</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Guan, Yana</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qingli</au><au>Wang, Yiting</au><au>Liu, Hongying</au><au>Guan, Yana</au><au>Xu, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>35</volume><issue>3</issue><spage>179</spage><epage>185</epage><pages>179-185</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Abstract Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>21030208</pmid><doi>10.1016/j.compmedimag.2010.10.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-6111 |
ispartof | Computerized medical imaging and graphics, 2011-04, Vol.35 (3), p.179-185 |
issn | 0895-6111 1879-0771 |
language | eng |
recordid | cdi_proquest_miscellaneous_872135635 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Artificial Intelligence Biotechnology - methods Color Hidden Markov model Humans Hyperspectral imaging Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Internal Medicine Other Pattern Recognition, Automated - methods Photography - methods Reproducibility of Results Sensitivity and Specificity Sublingual veins Tongue - blood supply Veins - anatomy & histology |
title | Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublingual%20vein%20extraction%20algorithm%20based%20on%20hyperspectral%20tongue%20imaging%20technology&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Li,%20Qingli&rft.date=2011-04-01&rft.volume=35&rft.issue=3&rft.spage=179&rft.epage=185&rft.pages=179-185&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2010.10.001&rft_dat=%3Cproquest_cross%3E872135635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857289049&rft_id=info:pmid/21030208&rft_els_id=S0895611110001059&rfr_iscdi=true |