Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths

One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2010-05, Vol.122 (891), p.573-589
Hauptverfasser: Ammons, S. Mark, Johnson, Luke, Laag, Edward A., Kupke, Renate, Gavel, Donald T., Bauman, Brian J., Max, Claire E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 891
container_start_page 573
container_title Publications of the Astronomical Society of the Pacific
container_volume 122
creator Ammons, S. Mark
Johnson, Luke
Laag, Edward A.
Kupke, Renate
Gavel, Donald T.
Bauman, Brian J.
Max, Claire E.
description One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star AO at visible wavelengths on a 10 m class telescope. These experiments, utilizing the UCO/Lick Observatory’s multi-object/laser tomographic adaptive optics (MOAO/LTAO) test bed, demonstrate new techniques in wave front sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack–Hartmann wave front sensors (with errors of∼30 nm ∼ 30     nm ) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl ratio on-axis, with 24.5% and 22.6% at 10″ and 15″, respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 s of simulation. The mean ensquared energy on-axis in a 50 mas spaxel is 46%. The off-axis Strehl ratios are obtained at radial separations 2–3 times the isoplanatic angle of the atmosphere at 710 nm. The MOAO-corrected field of view is∼25 ∼ 25 times larger in area than that limited by anisoplanatism at R-band. The error budget we assemble is composed almost entirely of terms verified through independent, empirical experiments, with minimal parameterization of theoretical models. We find that error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, three-dimensional turbulators, telescopes, and laser guide star simulators, and external calibration ports for deformable mirrors. These laboratory demonstrations add strong credibility to the implementation of on-sky demonstrators of laser tomographic adaptive optics (LTAO) on 5–10 m telescopes in the coming years.
doi_str_mv 10.1086/652728
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_872134561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/652728</jstor_id><sourcerecordid>10.1086/652728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-61e8a844ca26d85b461c4cc885e295402a6c9f74df85f03fa6d065119271a0ea3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv-hoCop9Ukm2TTY6lfhZYe_Dou0-yspmx3a5IWevC_G6148_TOJA_PwEvIKWdXnBl9rZUohNkjPa5yk-WmyPdJjzEmMy0MOyRHISwY49xw1iOf4zbim4eIFZ3AvEtT57f0BpddG2LaXEra1XS6bqLLZvMF2kiHFayi2yCdpbDpv6VAH91y3fyIOKNTjOjpEzYYbLdCCpG-uODmDdJX2KTn9i2-h2NyUEMT8OQ3--T57vZp9JBNZvfj0XCS2VyqmGmOBoyUFoSujJpLza201hiFYqAkE6DtoC5kVRtVs7wGXTGtOB-IggNDyPvkcudd-e5jjSGWSxcsNg202K1DaQrB0yXNE3mxI63vQvBYlyvvluC3JWfld73lrt4Env8qIVhoag-tdeGPFqLIlVTf3NmOW4TU7H-2L6LQhLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872134561</pqid></control><display><type>article</type><title>Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths</title><source>IOP Publishing Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Ammons, S. Mark ; Johnson, Luke ; Laag, Edward A. ; Kupke, Renate ; Gavel, Donald T. ; Bauman, Brian J. ; Max, Claire E.</creator><creatorcontrib>Ammons, S. Mark ; Johnson, Luke ; Laag, Edward A. ; Kupke, Renate ; Gavel, Donald T. ; Bauman, Brian J. ; Max, Claire E.</creatorcontrib><description>One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star AO at visible wavelengths on a 10 m class telescope. These experiments, utilizing the UCO/Lick Observatory’s multi-object/laser tomographic adaptive optics (MOAO/LTAO) test bed, demonstrate new techniques in wave front sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack–Hartmann wave front sensors (with errors of∼30 nm ∼ 30     nm ) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl ratio on-axis, with 24.5% and 22.6% at 10″ and 15″, respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 s of simulation. The mean ensquared energy on-axis in a 50 mas spaxel is 46%. The off-axis Strehl ratios are obtained at radial separations 2–3 times the isoplanatic angle of the atmosphere at 710 nm. The MOAO-corrected field of view is∼25 ∼ 25 times larger in area than that limited by anisoplanatism at R-band. The error budget we assemble is composed almost entirely of terms verified through independent, empirical experiments, with minimal parameterization of theoretical models. We find that error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, three-dimensional turbulators, telescopes, and laser guide star simulators, and external calibration ports for deformable mirrors. These laboratory demonstrations add strong credibility to the implementation of on-sky demonstrators of laser tomographic adaptive optics (LTAO) on 5–10 m telescopes in the coming years.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1086/652728</identifier><identifier>CODEN: PASPAU</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>Adaptive optics ; Astronomy ; Atmospherics ; Calibration ; Constellations ; Deformable mirrors ; Earth, ocean, space ; Exact sciences and technology ; Reflecting telescopes ; Scintillation ; Telescopes ; Wave fronts ; Wavelengths</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2010-05, Vol.122 (891), p.573-589</ispartof><rights>2010. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-61e8a844ca26d85b461c4cc885e295402a6c9f74df85f03fa6d065119271a0ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22735458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammons, S. Mark</creatorcontrib><creatorcontrib>Johnson, Luke</creatorcontrib><creatorcontrib>Laag, Edward A.</creatorcontrib><creatorcontrib>Kupke, Renate</creatorcontrib><creatorcontrib>Gavel, Donald T.</creatorcontrib><creatorcontrib>Bauman, Brian J.</creatorcontrib><creatorcontrib>Max, Claire E.</creatorcontrib><title>Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths</title><title>Publications of the Astronomical Society of the Pacific</title><description>One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star AO at visible wavelengths on a 10 m class telescope. These experiments, utilizing the UCO/Lick Observatory’s multi-object/laser tomographic adaptive optics (MOAO/LTAO) test bed, demonstrate new techniques in wave front sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack–Hartmann wave front sensors (with errors of∼30 nm ∼ 30     nm ) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl ratio on-axis, with 24.5% and 22.6% at 10″ and 15″, respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 s of simulation. The mean ensquared energy on-axis in a 50 mas spaxel is 46%. The off-axis Strehl ratios are obtained at radial separations 2–3 times the isoplanatic angle of the atmosphere at 710 nm. The MOAO-corrected field of view is∼25 ∼ 25 times larger in area than that limited by anisoplanatism at R-band. The error budget we assemble is composed almost entirely of terms verified through independent, empirical experiments, with minimal parameterization of theoretical models. We find that error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, three-dimensional turbulators, telescopes, and laser guide star simulators, and external calibration ports for deformable mirrors. These laboratory demonstrations add strong credibility to the implementation of on-sky demonstrators of laser tomographic adaptive optics (LTAO) on 5–10 m telescopes in the coming years.</description><subject>Adaptive optics</subject><subject>Astronomy</subject><subject>Atmospherics</subject><subject>Calibration</subject><subject>Constellations</subject><subject>Deformable mirrors</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Reflecting telescopes</subject><subject>Scintillation</subject><subject>Telescopes</subject><subject>Wave fronts</subject><subject>Wavelengths</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKv-hoCop9Ukm2TTY6lfhZYe_Dou0-yspmx3a5IWevC_G6148_TOJA_PwEvIKWdXnBl9rZUohNkjPa5yk-WmyPdJjzEmMy0MOyRHISwY49xw1iOf4zbim4eIFZ3AvEtT57f0BpddG2LaXEra1XS6bqLLZvMF2kiHFayi2yCdpbDpv6VAH91y3fyIOKNTjOjpEzYYbLdCCpG-uODmDdJX2KTn9i2-h2NyUEMT8OQ3--T57vZp9JBNZvfj0XCS2VyqmGmOBoyUFoSujJpLza201hiFYqAkE6DtoC5kVRtVs7wGXTGtOB-IggNDyPvkcudd-e5jjSGWSxcsNg202K1DaQrB0yXNE3mxI63vQvBYlyvvluC3JWfld73lrt4Env8qIVhoag-tdeGPFqLIlVTf3NmOW4TU7H-2L6LQhLs</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ammons, S. Mark</creator><creator>Johnson, Luke</creator><creator>Laag, Edward A.</creator><creator>Kupke, Renate</creator><creator>Gavel, Donald T.</creator><creator>Bauman, Brian J.</creator><creator>Max, Claire E.</creator><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100501</creationdate><title>Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths</title><author>Ammons, S. Mark ; Johnson, Luke ; Laag, Edward A. ; Kupke, Renate ; Gavel, Donald T. ; Bauman, Brian J. ; Max, Claire E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-61e8a844ca26d85b461c4cc885e295402a6c9f74df85f03fa6d065119271a0ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive optics</topic><topic>Astronomy</topic><topic>Atmospherics</topic><topic>Calibration</topic><topic>Constellations</topic><topic>Deformable mirrors</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Reflecting telescopes</topic><topic>Scintillation</topic><topic>Telescopes</topic><topic>Wave fronts</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammons, S. Mark</creatorcontrib><creatorcontrib>Johnson, Luke</creatorcontrib><creatorcontrib>Laag, Edward A.</creatorcontrib><creatorcontrib>Kupke, Renate</creatorcontrib><creatorcontrib>Gavel, Donald T.</creatorcontrib><creatorcontrib>Bauman, Brian J.</creatorcontrib><creatorcontrib>Max, Claire E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammons, S. Mark</au><au>Johnson, Luke</au><au>Laag, Edward A.</au><au>Kupke, Renate</au><au>Gavel, Donald T.</au><au>Bauman, Brian J.</au><au>Max, Claire E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>122</volume><issue>891</issue><spage>573</spage><epage>589</epage><pages>573-589</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><coden>PASPAU</coden><abstract>One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star AO at visible wavelengths on a 10 m class telescope. These experiments, utilizing the UCO/Lick Observatory’s multi-object/laser tomographic adaptive optics (MOAO/LTAO) test bed, demonstrate new techniques in wave front sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack–Hartmann wave front sensors (with errors of∼30 nm ∼ 30     nm ) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl ratio on-axis, with 24.5% and 22.6% at 10″ and 15″, respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 s of simulation. The mean ensquared energy on-axis in a 50 mas spaxel is 46%. The off-axis Strehl ratios are obtained at radial separations 2–3 times the isoplanatic angle of the atmosphere at 710 nm. The MOAO-corrected field of view is∼25 ∼ 25 times larger in area than that limited by anisoplanatism at R-band. The error budget we assemble is composed almost entirely of terms verified through independent, empirical experiments, with minimal parameterization of theoretical models. We find that error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, three-dimensional turbulators, telescopes, and laser guide star simulators, and external calibration ports for deformable mirrors. These laboratory demonstrations add strong credibility to the implementation of on-sky demonstrators of laser tomographic adaptive optics (LTAO) on 5–10 m telescopes in the coming years.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/652728</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2010-05, Vol.122 (891), p.573-589
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_miscellaneous_872134561
source IOP Publishing Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects Adaptive optics
Astronomy
Atmospherics
Calibration
Constellations
Deformable mirrors
Earth, ocean, space
Exact sciences and technology
Reflecting telescopes
Scintillation
Telescopes
Wave fronts
Wavelengths
title Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Laboratory%20Demonstrations%20of%20Multi-Object%20Adaptive%20Optics%20on%20a%20Simulated%2010%20Meter%20Telescope%20at%20Visible%20Wavelengths&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Ammons,%20S.%20Mark&rft.date=2010-05-01&rft.volume=122&rft.issue=891&rft.spage=573&rft.epage=589&rft.pages=573-589&rft.issn=0004-6280&rft.eissn=1538-3873&rft.coden=PASPAU&rft_id=info:doi/10.1086/652728&rft_dat=%3Cjstor_proqu%3E10.1086/652728%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872134561&rft_id=info:pmid/&rft_jstor_id=10.1086/652728&rfr_iscdi=true