Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains

We report the observation of Bose-Einstein condensation (BEC) of magnons in nanocrystalline Gd. Employing a self-consistent approach, the variations with magnetic field (H) of the BEC transition temperature, T(c)(H), and the volume, V (H), over which the condensate wavefunction retains its phase coh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2011-07, Vol.23 (26), p.266003-13
Hauptverfasser: Mathew, S P, Kaul, S N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 26
container_start_page 266003
container_title Journal of physics. Condensed matter
container_volume 23
creator Mathew, S P
Kaul, S N
description We report the observation of Bose-Einstein condensation (BEC) of magnons in nanocrystalline Gd. Employing a self-consistent approach, the variations with magnetic field (H) of the BEC transition temperature, T(c)(H), and the volume, V (H), over which the condensate wavefunction retains its phase coherence, the temperature and magnetic field variations of the chemical potential, μ(T, H), and the average occupation number for the ground state, [linear span]n(0)(T, H)[linear span], are accurately determined from the magnetization, M(T, H), and specific heat, C(T, H), data. The variation of T(c) with magnetic field has the functional form T(c)(H) = T(c)(H = 0) + aH(2/3) that is characteristic of BEC. In conformity with the predictions of BEC theory (i) for T ≤ T(c), the condensate fraction [linear span]n(0)(T, H)[linear span]/[linear span]n(0)(T = 1.8 K, H)[linear span] at constant H scales with the reduced temperature as [T/T(c)(H)](3/2), (ii) in the limit H−>0, μ(T, H) ͠= 0 for T ≤ T(c) and abruptly falls to large negative values as the temperature exceeds T(c), and (iii) the magnetic-field-induced change in magnon entropy, deduced from both M(T, H) and C(T, H), follows the T(3/2) power law at low temperatures T
doi_str_mv 10.1088/0953-8984/23/26/266003
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_872126796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567095818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-37f00390496a031f4c337d3a9d2f4c1a32b7771197dc139f8210f1cabaf9ba943</originalsourceid><addsrcrecordid>eNqNkc9qFEEQxhtRzBp9hTAX0cu43V29_eeoIVEhkIsBwUNT29MdW2a6x-lZwnrKO_iGPom97BoPEQkUVEH9vqriK0JOGH3DqNZLalbQaqPFksOSyxqSUnhEFgwka6XQnx-TxR10RJ6V8o1SKjSIp-SIM6kAjFyQL-9y8b9uf57FVGYfU-Ny6nwqOMecmhyaAa9TTqWprTH3Wzdty4x9H5NvrrHLtYibobmJ89cmYcptiT9qZ8I67zl5ErAv_sUhH5Or87NPpx_ai8v3H0_fXrROrGBuQYV6uqHCSKTAgnAAqgM0Ha81Q-BrpRRjRnWOgQmaMxqYwzUGs0Yj4Ji82s8dp_x948tsh1ic73tMPm-K1YozLpWRlXz9X5KtpKqmaaYrKveom3Ipkw92nOKA09YyancvsDt37c5dy8FyafcvqMKTw47NevDdneyP5xV4eQCwOOzDhMnF8pcTABwMrxzbczGPD1_e3tf8m7VjF-A3AhOsIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567095818</pqid></control><display><type>article</type><title>Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mathew, S P ; Kaul, S N</creator><creatorcontrib>Mathew, S P ; Kaul, S N</creatorcontrib><description>We report the observation of Bose-Einstein condensation (BEC) of magnons in nanocrystalline Gd. Employing a self-consistent approach, the variations with magnetic field (H) of the BEC transition temperature, T(c)(H), and the volume, V (H), over which the condensate wavefunction retains its phase coherence, the temperature and magnetic field variations of the chemical potential, μ(T, H), and the average occupation number for the ground state, [linear span]n(0)(T, H)[linear span], are accurately determined from the magnetization, M(T, H), and specific heat, C(T, H), data. The variation of T(c) with magnetic field has the functional form T(c)(H) = T(c)(H = 0) + aH(2/3) that is characteristic of BEC. In conformity with the predictions of BEC theory (i) for T ≤ T(c), the condensate fraction [linear span]n(0)(T, H)[linear span]/[linear span]n(0)(T = 1.8 K, H)[linear span] at constant H scales with the reduced temperature as [T/T(c)(H)](3/2), (ii) in the limit H−&gt;0, μ(T, H) ͠= 0 for T ≤ T(c) and abruptly falls to large negative values as the temperature exceeds T(c), and (iii) the magnetic-field-induced change in magnon entropy, deduced from both M(T, H) and C(T, H), follows the T(3/2) power law at low temperatures T&lt;&lt;T(p)(*) and goes through a peak at T(p)(*).</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/23/26/266003</identifier><identifier>PMID: 21673396</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Brackets ; Condensates ; Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensing ; Exact sciences and technology ; Magnetic fields ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Magnetically ordered materials: other intrinsic properties ; Magnons ; Physics ; Spin waves ; Texts</subject><ispartof>Journal of physics. Condensed matter, 2011-07, Vol.23 (26), p.266003-13</ispartof><rights>2015 INIST-CNRS</rights><rights>2011 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-37f00390496a031f4c337d3a9d2f4c1a32b7771197dc139f8210f1cabaf9ba943</citedby><cites>FETCH-LOGICAL-c453t-37f00390496a031f4c337d3a9d2f4c1a32b7771197dc139f8210f1cabaf9ba943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/23/26/266003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24332392$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21673396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathew, S P</creatorcontrib><creatorcontrib>Kaul, S N</creatorcontrib><title>Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>We report the observation of Bose-Einstein condensation (BEC) of magnons in nanocrystalline Gd. Employing a self-consistent approach, the variations with magnetic field (H) of the BEC transition temperature, T(c)(H), and the volume, V (H), over which the condensate wavefunction retains its phase coherence, the temperature and magnetic field variations of the chemical potential, μ(T, H), and the average occupation number for the ground state, [linear span]n(0)(T, H)[linear span], are accurately determined from the magnetization, M(T, H), and specific heat, C(T, H), data. The variation of T(c) with magnetic field has the functional form T(c)(H) = T(c)(H = 0) + aH(2/3) that is characteristic of BEC. In conformity with the predictions of BEC theory (i) for T ≤ T(c), the condensate fraction [linear span]n(0)(T, H)[linear span]/[linear span]n(0)(T = 1.8 K, H)[linear span] at constant H scales with the reduced temperature as [T/T(c)(H)](3/2), (ii) in the limit H−&gt;0, μ(T, H) ͠= 0 for T ≤ T(c) and abruptly falls to large negative values as the temperature exceeds T(c), and (iii) the magnetic-field-induced change in magnon entropy, deduced from both M(T, H) and C(T, H), follows the T(3/2) power law at low temperatures T&lt;&lt;T(p)(*) and goes through a peak at T(p)(*).</description><subject>Brackets</subject><subject>Condensates</subject><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensing</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnons</subject><subject>Physics</subject><subject>Spin waves</subject><subject>Texts</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc9qFEEQxhtRzBp9hTAX0cu43V29_eeoIVEhkIsBwUNT29MdW2a6x-lZwnrKO_iGPom97BoPEQkUVEH9vqriK0JOGH3DqNZLalbQaqPFksOSyxqSUnhEFgwka6XQnx-TxR10RJ6V8o1SKjSIp-SIM6kAjFyQL-9y8b9uf57FVGYfU-Ny6nwqOMecmhyaAa9TTqWprTH3Wzdty4x9H5NvrrHLtYibobmJ89cmYcptiT9qZ8I67zl5ErAv_sUhH5Or87NPpx_ai8v3H0_fXrROrGBuQYV6uqHCSKTAgnAAqgM0Ha81Q-BrpRRjRnWOgQmaMxqYwzUGs0Yj4Ji82s8dp_x948tsh1ic73tMPm-K1YozLpWRlXz9X5KtpKqmaaYrKveom3Ipkw92nOKA09YyancvsDt37c5dy8FyafcvqMKTw47NevDdneyP5xV4eQCwOOzDhMnF8pcTABwMrxzbczGPD1_e3tf8m7VjF-A3AhOsIA</recordid><startdate>20110706</startdate><enddate>20110706</enddate><creator>Mathew, S P</creator><creator>Kaul, S N</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110706</creationdate><title>Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains</title><author>Mathew, S P ; Kaul, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-37f00390496a031f4c337d3a9d2f4c1a32b7771197dc139f8210f1cabaf9ba943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brackets</topic><topic>Condensates</topic><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensing</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnons</topic><topic>Physics</topic><topic>Spin waves</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathew, S P</creatorcontrib><creatorcontrib>Kaul, S N</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, S P</au><au>Kaul, S N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2011-07-06</date><risdate>2011</risdate><volume>23</volume><issue>26</issue><spage>266003</spage><epage>13</epage><pages>266003-13</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We report the observation of Bose-Einstein condensation (BEC) of magnons in nanocrystalline Gd. Employing a self-consistent approach, the variations with magnetic field (H) of the BEC transition temperature, T(c)(H), and the volume, V (H), over which the condensate wavefunction retains its phase coherence, the temperature and magnetic field variations of the chemical potential, μ(T, H), and the average occupation number for the ground state, [linear span]n(0)(T, H)[linear span], are accurately determined from the magnetization, M(T, H), and specific heat, C(T, H), data. The variation of T(c) with magnetic field has the functional form T(c)(H) = T(c)(H = 0) + aH(2/3) that is characteristic of BEC. In conformity with the predictions of BEC theory (i) for T ≤ T(c), the condensate fraction [linear span]n(0)(T, H)[linear span]/[linear span]n(0)(T = 1.8 K, H)[linear span] at constant H scales with the reduced temperature as [T/T(c)(H)](3/2), (ii) in the limit H−&gt;0, μ(T, H) ͠= 0 for T ≤ T(c) and abruptly falls to large negative values as the temperature exceeds T(c), and (iii) the magnetic-field-induced change in magnon entropy, deduced from both M(T, H) and C(T, H), follows the T(3/2) power law at low temperatures T&lt;&lt;T(p)(*) and goes through a peak at T(p)(*).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21673396</pmid><doi>10.1088/0953-8984/23/26/266003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2011-07, Vol.23 (26), p.266003-13
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_872126796
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Brackets
Condensates
Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensing
Exact sciences and technology
Magnetic fields
Magnetic properties and materials
Magnetic properties of nanostructures
Magnetically ordered materials: other intrinsic properties
Magnons
Physics
Spin waves
Texts
title Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20condensation%20of%20magnons%20in%20polycrystalline%20gadolinium%20with%20nano-size%20grains&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Mathew,%20S%20P&rft.date=2011-07-06&rft.volume=23&rft.issue=26&rft.spage=266003&rft.epage=13&rft.pages=266003-13&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/23/26/266003&rft_dat=%3Cproquest_pasca%3E1567095818%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567095818&rft_id=info:pmid/21673396&rfr_iscdi=true