The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds

Abstract Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2011-09, Vol.32 (25), p.5837-5846
Hauptverfasser: Zhao, Haixin, Dong, Wenjun, Zheng, Yingying, Liu, Aiping, Yao, Juming, Li, Chaorong, Tang, Weihua, Chen, Benyong, Wang, Ge, Shi, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5846
container_issue 25
container_start_page 5837
container_title Biomaterials
container_volume 32
creator Zhao, Haixin
Dong, Wenjun
Zheng, Yingying
Liu, Aiping
Yao, Juming
Li, Chaorong
Tang, Weihua
Chen, Benyong
Wang, Ge
Shi, Zhan
description Abstract Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, and then followed by an electrochemical synthesis of hydroxyapatite nanoparticles on titanate nanowire. The incorporation of titanate nanowire matrix with high oriented hydroxyapatite nanoparticles generates hierarchical scaffolds with highly osteogenic, structural integrity and excellent mechanical performance. As-prepared porous three dimensional interconnected hydroxyapatite-modified titanate nanowire scaffolds, mimicking the nature’s extracellular matrix, could provide a suitable microenvironment for tissue cell ingrowth and differentiation. The ceramic titanate nanowire core with HA nanoparticle sheath structure displays superhydrophilicity, which facilitates the cell attachment and proliferation, and induces the in vitro tissue-engineered bone. Human osteoblast-like MG63 cells were cultured on the hydroxyapatite-modified titanate nanowire scaffolds, and the results showed that the scaffolds highly promote the bioactivity, osteoconductivity and osteoblast differentiation.
doi_str_mv 10.1016/j.biomaterials.2011.04.083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_871002940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961211005059</els_id><sourcerecordid>871002940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-72e4f4ba92fa61f8317aacf7aec5989bc525041145381aa511c7a01d9c4157723</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRCIbgt_AUVcOCXMOHY-OCChAgWpEgfK2Zp1xtRLNl7shLL_HkdbEOLEafSk997MvCfEc4QKAZuXu2rrw55mjp7GVElArEBV0NUPxAa7tit1D_qh2AAqWfYNyjNxntIOMgYlH4sziQ3orm82wtzccpHmuNh5iTQWNA1Fdh_DV28zPMRw4Dh7TkVwxe1xiOHnkQ40-5nLfRi88zwUGdGU7ykmmsKdj9nRknNhHNIT8cjlI_np_bwQX96_u7n8UF5_uvp4-ea6tBpgLlvJyqkt9dJRg66rsSWyriW2uu_6rdVSg0JUuu6QSCPalgCH3irUbSvrC_Hi5Jsv_r5wms3eJ8vjSBOHJZmuRQDZK8jMVyemjSGlyM4cot9TPBoEs-ZrdubvfM2arwFlcr5Z_Ox-zbLd8_BH-jvQTHh7InB-9ofnaJL1PFkecix2NkPw_7fn9T82dvTTWsk3PnLahSVOqwZNkgbM57XptWjMX2rQff0LKsyppQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871002940</pqid></control><display><type>article</type><title>The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Haixin ; Dong, Wenjun ; Zheng, Yingying ; Liu, Aiping ; Yao, Juming ; Li, Chaorong ; Tang, Weihua ; Chen, Benyong ; Wang, Ge ; Shi, Zhan</creator><creatorcontrib>Zhao, Haixin ; Dong, Wenjun ; Zheng, Yingying ; Liu, Aiping ; Yao, Juming ; Li, Chaorong ; Tang, Weihua ; Chen, Benyong ; Wang, Ge ; Shi, Zhan</creatorcontrib><description>Abstract Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, and then followed by an electrochemical synthesis of hydroxyapatite nanoparticles on titanate nanowire. The incorporation of titanate nanowire matrix with high oriented hydroxyapatite nanoparticles generates hierarchical scaffolds with highly osteogenic, structural integrity and excellent mechanical performance. As-prepared porous three dimensional interconnected hydroxyapatite-modified titanate nanowire scaffolds, mimicking the nature’s extracellular matrix, could provide a suitable microenvironment for tissue cell ingrowth and differentiation. The ceramic titanate nanowire core with HA nanoparticle sheath structure displays superhydrophilicity, which facilitates the cell attachment and proliferation, and induces the in vitro tissue-engineered bone. Human osteoblast-like MG63 cells were cultured on the hydroxyapatite-modified titanate nanowire scaffolds, and the results showed that the scaffolds highly promote the bioactivity, osteoconductivity and osteoblast differentiation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2011.04.083</identifier><identifier>PMID: 21605896</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biomaterial ; Cell Line, Tumor ; Dentistry ; Durapatite - chemistry ; Humans ; Hydroxyapatite ; Microscopy, Fluorescence ; Nanowires ; Scaffold ; Titanate nanowire ; Titanium - chemistry</subject><ispartof>Biomaterials, 2011-09, Vol.32 (25), p.5837-5846</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-72e4f4ba92fa61f8317aacf7aec5989bc525041145381aa511c7a01d9c4157723</citedby><cites>FETCH-LOGICAL-c500t-72e4f4ba92fa61f8317aacf7aec5989bc525041145381aa511c7a01d9c4157723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2011.04.083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21605896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Haixin</creatorcontrib><creatorcontrib>Dong, Wenjun</creatorcontrib><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Yao, Juming</creatorcontrib><creatorcontrib>Li, Chaorong</creatorcontrib><creatorcontrib>Tang, Weihua</creatorcontrib><creatorcontrib>Chen, Benyong</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shi, Zhan</creatorcontrib><title>The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, and then followed by an electrochemical synthesis of hydroxyapatite nanoparticles on titanate nanowire. The incorporation of titanate nanowire matrix with high oriented hydroxyapatite nanoparticles generates hierarchical scaffolds with highly osteogenic, structural integrity and excellent mechanical performance. As-prepared porous three dimensional interconnected hydroxyapatite-modified titanate nanowire scaffolds, mimicking the nature’s extracellular matrix, could provide a suitable microenvironment for tissue cell ingrowth and differentiation. The ceramic titanate nanowire core with HA nanoparticle sheath structure displays superhydrophilicity, which facilitates the cell attachment and proliferation, and induces the in vitro tissue-engineered bone. Human osteoblast-like MG63 cells were cultured on the hydroxyapatite-modified titanate nanowire scaffolds, and the results showed that the scaffolds highly promote the bioactivity, osteoconductivity and osteoblast differentiation.</description><subject>Advanced Basic Science</subject><subject>Biomaterial</subject><subject>Cell Line, Tumor</subject><subject>Dentistry</subject><subject>Durapatite - chemistry</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Microscopy, Fluorescence</subject><subject>Nanowires</subject><subject>Scaffold</subject><subject>Titanate nanowire</subject><subject>Titanium - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1v1DAQtRCIbgt_AUVcOCXMOHY-OCChAgWpEgfK2Zp1xtRLNl7shLL_HkdbEOLEafSk997MvCfEc4QKAZuXu2rrw55mjp7GVElArEBV0NUPxAa7tit1D_qh2AAqWfYNyjNxntIOMgYlH4sziQ3orm82wtzccpHmuNh5iTQWNA1Fdh_DV28zPMRw4Dh7TkVwxe1xiOHnkQ40-5nLfRi88zwUGdGU7ykmmsKdj9nRknNhHNIT8cjlI_np_bwQX96_u7n8UF5_uvp4-ea6tBpgLlvJyqkt9dJRg66rsSWyriW2uu_6rdVSg0JUuu6QSCPalgCH3irUbSvrC_Hi5Jsv_r5wms3eJ8vjSBOHJZmuRQDZK8jMVyemjSGlyM4cot9TPBoEs-ZrdubvfM2arwFlcr5Z_Ox-zbLd8_BH-jvQTHh7InB-9ofnaJL1PFkecix2NkPw_7fn9T82dvTTWsk3PnLahSVOqwZNkgbM57XptWjMX2rQff0LKsyppQ</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Zhao, Haixin</creator><creator>Dong, Wenjun</creator><creator>Zheng, Yingying</creator><creator>Liu, Aiping</creator><creator>Yao, Juming</creator><creator>Li, Chaorong</creator><creator>Tang, Weihua</creator><creator>Chen, Benyong</creator><creator>Wang, Ge</creator><creator>Shi, Zhan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110901</creationdate><title>The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds</title><author>Zhao, Haixin ; Dong, Wenjun ; Zheng, Yingying ; Liu, Aiping ; Yao, Juming ; Li, Chaorong ; Tang, Weihua ; Chen, Benyong ; Wang, Ge ; Shi, Zhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-72e4f4ba92fa61f8317aacf7aec5989bc525041145381aa511c7a01d9c4157723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Advanced Basic Science</topic><topic>Biomaterial</topic><topic>Cell Line, Tumor</topic><topic>Dentistry</topic><topic>Durapatite - chemistry</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Microscopy, Fluorescence</topic><topic>Nanowires</topic><topic>Scaffold</topic><topic>Titanate nanowire</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haixin</creatorcontrib><creatorcontrib>Dong, Wenjun</creatorcontrib><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Yao, Juming</creatorcontrib><creatorcontrib>Li, Chaorong</creatorcontrib><creatorcontrib>Tang, Weihua</creatorcontrib><creatorcontrib>Chen, Benyong</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shi, Zhan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Haixin</au><au>Dong, Wenjun</au><au>Zheng, Yingying</au><au>Liu, Aiping</au><au>Yao, Juming</au><au>Li, Chaorong</au><au>Tang, Weihua</au><au>Chen, Benyong</au><au>Wang, Ge</au><au>Shi, Zhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>32</volume><issue>25</issue><spage>5837</spage><epage>5846</epage><pages>5837-5846</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, and then followed by an electrochemical synthesis of hydroxyapatite nanoparticles on titanate nanowire. The incorporation of titanate nanowire matrix with high oriented hydroxyapatite nanoparticles generates hierarchical scaffolds with highly osteogenic, structural integrity and excellent mechanical performance. As-prepared porous three dimensional interconnected hydroxyapatite-modified titanate nanowire scaffolds, mimicking the nature’s extracellular matrix, could provide a suitable microenvironment for tissue cell ingrowth and differentiation. The ceramic titanate nanowire core with HA nanoparticle sheath structure displays superhydrophilicity, which facilitates the cell attachment and proliferation, and induces the in vitro tissue-engineered bone. Human osteoblast-like MG63 cells were cultured on the hydroxyapatite-modified titanate nanowire scaffolds, and the results showed that the scaffolds highly promote the bioactivity, osteoconductivity and osteoblast differentiation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21605896</pmid><doi>10.1016/j.biomaterials.2011.04.083</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2011-09, Vol.32 (25), p.5837-5846
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_871002940
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Biomaterial
Cell Line, Tumor
Dentistry
Durapatite - chemistry
Humans
Hydroxyapatite
Microscopy, Fluorescence
Nanowires
Scaffold
Titanate nanowire
Titanium - chemistry
title The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20and%20biological%20properties%20of%20hydroxyapatite-modified%20titanate%20nanowire%20scaffolds&rft.jtitle=Biomaterials&rft.au=Zhao,%20Haixin&rft.date=2011-09-01&rft.volume=32&rft.issue=25&rft.spage=5837&rft.epage=5846&rft.pages=5837-5846&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2011.04.083&rft_dat=%3Cproquest_cross%3E871002940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871002940&rft_id=info:pmid/21605896&rft_els_id=1_s2_0_S0142961211005059&rfr_iscdi=true