Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates

Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe4)3 of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-04, Vol.133 (16), p.6323-6337
Hauptverfasser: Occhipinti, Giovanni, Meermann, Christian, Dietrich, H. Martin, Litlabø, Rannveig, Auras, Florian, Törnroos, Karl W, Maichle-Mössmer, Cäcilia, Jensen, Vidar R, Anwander, Reiner
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6337
container_issue 16
container_start_page 6323
container_title Journal of the American Chemical Society
container_volume 133
creator Occhipinti, Giovanni
Meermann, Christian
Dietrich, H. Martin
Litlabø, Rannveig
Auras, Florian
Törnroos, Karl W
Maichle-Mössmer, Cäcilia
Jensen, Vidar R
Anwander, Reiner
description Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe4)3 of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this class of metals usually is considered to be relatively uniform with respect to properties. On the basis of quantum chemically obtained relative energies and atomic and molecular descriptors of homoleptic tris(tetramethylaluminate) and related compounds of rare earth metals, transition metals, p-block metals, and actinides, multivariate modeling has identified the importance of ionic metal−methylaluminate bonding and small steric repulsion between the methylaluminate ligands for obtaining stable homoleptic compounds. Low electronegativity and a sufficiently large ionic radius are thus essential properties for the central metal atom. Whereas scandium and many transition metals are too small and too electronegative for this task, all lanthanides and actinides covered in this study are predicted to give homoleptic compounds stable toward loss of trimethylaluminum, the expected main decomposition reaction. Three of the predicted lanthanide-based compounds Ln(AlMe4)3 (Ln = Ce, Tm, Yb) have been prepared and fully characterized in the present work, in addition to Ln(OCH2 tBu)3(AlMe3)3 (Ln = Sc, Nd) and [Eu(AlEt4)2] n . At ambient temperature, donor-free hexane solutions of Ln(AlMe4)3 of the Ln3+/Ln2+ redox-active metal centers display enhanced reduction to [Ln(AlMe4)2] n with decreasing negative redox potential, in the order Eu ≫ Yb ≫ Sm. Whereas Eu(AlMe4)3 could not be identified, Yb(AlMe4)3 turned out to be isolable in low yield. All attempts to prepare the putative Sc(AlMe4)3, featuring the smallest rare earth metal center, failed.
doi_str_mv 10.1021/ja2001049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_870546445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>870546445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-de2da90103335d19474c6f06098b10bff5cc7b88a96909e4db9162ab7878c1303</originalsourceid><addsrcrecordid>eNptkLFOwzAQQC0EoqUw8AMoCwKGwJ3jOPaIKkojFTG0zJHjOGoqJymxM-TvCWrpxHQ66enp7hFyi_CMQPFlpygAApNnZIoxhTBGys_JFABomAgeTciVc7txZVTgJZlQZJxTwClZrIfGb42rXKCaIlh7lVe28kPQlsGyrVtr9r7SwYfxyj6mafoUbIzvVG38drDK9nXVKG_cNbkolXXm5jhn5Gvxtpkvw9Xnezp_XYWKYeLDwtBCyfHUKIriAiVLmOYlcJAiR8jLMtY6yYVQkkuQhhW5RE5VnohEaIwgmpGHg3fftd-9cT6rK6eNtaoxbe8ykUDMOGPxSD4dSN21znWmzPZdVatuyBCy32rZqdrI3h2tfV6b4kT-ZRqB-wOgtMt2bd8145P_iH4AxBdxbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870546445</pqid></control><display><type>article</type><title>Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates</title><source>American Chemical Society Journals</source><creator>Occhipinti, Giovanni ; Meermann, Christian ; Dietrich, H. Martin ; Litlabø, Rannveig ; Auras, Florian ; Törnroos, Karl W ; Maichle-Mössmer, Cäcilia ; Jensen, Vidar R ; Anwander, Reiner</creator><creatorcontrib>Occhipinti, Giovanni ; Meermann, Christian ; Dietrich, H. Martin ; Litlabø, Rannveig ; Auras, Florian ; Törnroos, Karl W ; Maichle-Mössmer, Cäcilia ; Jensen, Vidar R ; Anwander, Reiner</creatorcontrib><description>Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe4)3 of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this class of metals usually is considered to be relatively uniform with respect to properties. On the basis of quantum chemically obtained relative energies and atomic and molecular descriptors of homoleptic tris(tetramethylaluminate) and related compounds of rare earth metals, transition metals, p-block metals, and actinides, multivariate modeling has identified the importance of ionic metal−methylaluminate bonding and small steric repulsion between the methylaluminate ligands for obtaining stable homoleptic compounds. Low electronegativity and a sufficiently large ionic radius are thus essential properties for the central metal atom. Whereas scandium and many transition metals are too small and too electronegative for this task, all lanthanides and actinides covered in this study are predicted to give homoleptic compounds stable toward loss of trimethylaluminum, the expected main decomposition reaction. Three of the predicted lanthanide-based compounds Ln(AlMe4)3 (Ln = Ce, Tm, Yb) have been prepared and fully characterized in the present work, in addition to Ln(OCH2 tBu)3(AlMe3)3 (Ln = Sc, Nd) and [Eu(AlEt4)2] n . At ambient temperature, donor-free hexane solutions of Ln(AlMe4)3 of the Ln3+/Ln2+ redox-active metal centers display enhanced reduction to [Ln(AlMe4)2] n with decreasing negative redox potential, in the order Eu ≫ Yb ≫ Sm. Whereas Eu(AlMe4)3 could not be identified, Yb(AlMe4)3 turned out to be isolable in low yield. All attempts to prepare the putative Sc(AlMe4)3, featuring the smallest rare earth metal center, failed.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2001049</identifier><identifier>PMID: 21466201</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2011-04, Vol.133 (16), p.6323-6337</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-de2da90103335d19474c6f06098b10bff5cc7b88a96909e4db9162ab7878c1303</citedby><cites>FETCH-LOGICAL-a417t-de2da90103335d19474c6f06098b10bff5cc7b88a96909e4db9162ab7878c1303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2001049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2001049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21466201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Occhipinti, Giovanni</creatorcontrib><creatorcontrib>Meermann, Christian</creatorcontrib><creatorcontrib>Dietrich, H. Martin</creatorcontrib><creatorcontrib>Litlabø, Rannveig</creatorcontrib><creatorcontrib>Auras, Florian</creatorcontrib><creatorcontrib>Törnroos, Karl W</creatorcontrib><creatorcontrib>Maichle-Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Jensen, Vidar R</creatorcontrib><creatorcontrib>Anwander, Reiner</creatorcontrib><title>Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe4)3 of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this class of metals usually is considered to be relatively uniform with respect to properties. On the basis of quantum chemically obtained relative energies and atomic and molecular descriptors of homoleptic tris(tetramethylaluminate) and related compounds of rare earth metals, transition metals, p-block metals, and actinides, multivariate modeling has identified the importance of ionic metal−methylaluminate bonding and small steric repulsion between the methylaluminate ligands for obtaining stable homoleptic compounds. Low electronegativity and a sufficiently large ionic radius are thus essential properties for the central metal atom. Whereas scandium and many transition metals are too small and too electronegative for this task, all lanthanides and actinides covered in this study are predicted to give homoleptic compounds stable toward loss of trimethylaluminum, the expected main decomposition reaction. Three of the predicted lanthanide-based compounds Ln(AlMe4)3 (Ln = Ce, Tm, Yb) have been prepared and fully characterized in the present work, in addition to Ln(OCH2 tBu)3(AlMe3)3 (Ln = Sc, Nd) and [Eu(AlEt4)2] n . At ambient temperature, donor-free hexane solutions of Ln(AlMe4)3 of the Ln3+/Ln2+ redox-active metal centers display enhanced reduction to [Ln(AlMe4)2] n with decreasing negative redox potential, in the order Eu ≫ Yb ≫ Sm. Whereas Eu(AlMe4)3 could not be identified, Yb(AlMe4)3 turned out to be isolable in low yield. All attempts to prepare the putative Sc(AlMe4)3, featuring the smallest rare earth metal center, failed.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQQC0EoqUw8AMoCwKGwJ3jOPaIKkojFTG0zJHjOGoqJymxM-TvCWrpxHQ66enp7hFyi_CMQPFlpygAApNnZIoxhTBGys_JFABomAgeTciVc7txZVTgJZlQZJxTwClZrIfGb42rXKCaIlh7lVe28kPQlsGyrVtr9r7SwYfxyj6mafoUbIzvVG38drDK9nXVKG_cNbkolXXm5jhn5Gvxtpkvw9Xnezp_XYWKYeLDwtBCyfHUKIriAiVLmOYlcJAiR8jLMtY6yYVQkkuQhhW5RE5VnohEaIwgmpGHg3fftd-9cT6rK6eNtaoxbe8ykUDMOGPxSD4dSN21znWmzPZdVatuyBCy32rZqdrI3h2tfV6b4kT-ZRqB-wOgtMt2bd8145P_iH4AxBdxbg</recordid><startdate>20110427</startdate><enddate>20110427</enddate><creator>Occhipinti, Giovanni</creator><creator>Meermann, Christian</creator><creator>Dietrich, H. Martin</creator><creator>Litlabø, Rannveig</creator><creator>Auras, Florian</creator><creator>Törnroos, Karl W</creator><creator>Maichle-Mössmer, Cäcilia</creator><creator>Jensen, Vidar R</creator><creator>Anwander, Reiner</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110427</creationdate><title>Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates</title><author>Occhipinti, Giovanni ; Meermann, Christian ; Dietrich, H. Martin ; Litlabø, Rannveig ; Auras, Florian ; Törnroos, Karl W ; Maichle-Mössmer, Cäcilia ; Jensen, Vidar R ; Anwander, Reiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-de2da90103335d19474c6f06098b10bff5cc7b88a96909e4db9162ab7878c1303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Occhipinti, Giovanni</creatorcontrib><creatorcontrib>Meermann, Christian</creatorcontrib><creatorcontrib>Dietrich, H. Martin</creatorcontrib><creatorcontrib>Litlabø, Rannveig</creatorcontrib><creatorcontrib>Auras, Florian</creatorcontrib><creatorcontrib>Törnroos, Karl W</creatorcontrib><creatorcontrib>Maichle-Mössmer, Cäcilia</creatorcontrib><creatorcontrib>Jensen, Vidar R</creatorcontrib><creatorcontrib>Anwander, Reiner</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Occhipinti, Giovanni</au><au>Meermann, Christian</au><au>Dietrich, H. Martin</au><au>Litlabø, Rannveig</au><au>Auras, Florian</au><au>Törnroos, Karl W</au><au>Maichle-Mössmer, Cäcilia</au><au>Jensen, Vidar R</au><au>Anwander, Reiner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2011-04-27</date><risdate>2011</risdate><volume>133</volume><issue>16</issue><spage>6323</spage><epage>6337</epage><pages>6323-6337</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe4)3 of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this class of metals usually is considered to be relatively uniform with respect to properties. On the basis of quantum chemically obtained relative energies and atomic and molecular descriptors of homoleptic tris(tetramethylaluminate) and related compounds of rare earth metals, transition metals, p-block metals, and actinides, multivariate modeling has identified the importance of ionic metal−methylaluminate bonding and small steric repulsion between the methylaluminate ligands for obtaining stable homoleptic compounds. Low electronegativity and a sufficiently large ionic radius are thus essential properties for the central metal atom. Whereas scandium and many transition metals are too small and too electronegative for this task, all lanthanides and actinides covered in this study are predicted to give homoleptic compounds stable toward loss of trimethylaluminum, the expected main decomposition reaction. Three of the predicted lanthanide-based compounds Ln(AlMe4)3 (Ln = Ce, Tm, Yb) have been prepared and fully characterized in the present work, in addition to Ln(OCH2 tBu)3(AlMe3)3 (Ln = Sc, Nd) and [Eu(AlEt4)2] n . At ambient temperature, donor-free hexane solutions of Ln(AlMe4)3 of the Ln3+/Ln2+ redox-active metal centers display enhanced reduction to [Ln(AlMe4)2] n with decreasing negative redox potential, in the order Eu ≫ Yb ≫ Sm. Whereas Eu(AlMe4)3 could not be identified, Yb(AlMe4)3 turned out to be isolable in low yield. All attempts to prepare the putative Sc(AlMe4)3, featuring the smallest rare earth metal center, failed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21466201</pmid><doi>10.1021/ja2001049</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2011-04, Vol.133 (16), p.6323-6337
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_870546445
source American Chemical Society Journals
title Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Stability%20of%20Homoleptic%20Metal(III)%20Tetramethylaluminates&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Occhipinti,%20Giovanni&rft.date=2011-04-27&rft.volume=133&rft.issue=16&rft.spage=6323&rft.epage=6337&rft.pages=6323-6337&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2001049&rft_dat=%3Cproquest_cross%3E870546445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870546445&rft_id=info:pmid/21466201&rfr_iscdi=true