SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers
A composite joining technique, using a Ni–56Si filler alloy and Mo as interlayers, was used to join SiC to SiC and to Kovar. The wetting of the Ni–Si alloy on SiC ceramic was studied in a vacuum at 1,350 °C by the sessile drop technique as a function of time; the non-reactive wetting characteristics...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2010-08, Vol.45 (16), p.4299-4307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4307 |
---|---|
container_issue | 16 |
container_start_page | 4299 |
container_title | Journal of materials science |
container_volume | 45 |
creator | Liu, G. W. Valenza, F. Muolo, M. L. Passerone, A. |
description | A composite joining technique, using a Ni–56Si filler alloy and Mo as interlayers, was used to join SiC to SiC and to Kovar. The wetting of the Ni–Si alloy on SiC ceramic was studied in a vacuum at 1,350 °C by the sessile drop technique as a function of time; the non-reactive wetting characteristics in the Ni–Si/SiC system were confirmed, with an equilibrium contact angle of about 23°. SiC/SiC joints were fabricated by two processes using a Ni–Si/Mo/Ni–Si structure as the interlayer. SiC/Kovar joints were produced by means of a multilayer structure: molybdenum, which is used as the interlayer, was joined to Kovar on one side by means of transient liquid phase bonding and to SiC on the other side, using a Ni–Si coating as a filler alloy. The resulting joints were analyzed and discussed in terms of joint morphology and microstructure, joint strength, and fracture behavior. Two interfacial layers form at the Kovar/Mo and the Mo/Ni–Si interfaces due to dissolution and interdiffusion phenomena between the metallic elements, without there being any observable reactions with the SiC component. The type of joining process and the experimental conditions used play a key role in determining the joint microstructure and composition, the joint strength and its fracture behavior. |
doi_str_mv | 10.1007/s10853-010-4337-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869852512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365071536</galeid><sourcerecordid>A365071536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-62a3db13df75a7b0bf36fdbf5004ca7df901425254fecd4c640662b91119c5fe3</originalsourceid><addsrcrecordid>eNp1kc-KFDEQh4MoOK4-gLcGD-Khd6vytxtPy7Dq4qrg6Dmk08mQoSdZkx5xbr6Db-iTmLEFWUFCqKL4vqLgR8hThHMEUBcFoROsBYSWM6Zado-sUCjW8g7YfbICoLSlXOJD8qiUHQAIRXFFXm7C-qL-xsSxOfVv01eTm10KMcRtMxyb9-Hn9x-b8Bt4l5oQZ5cnc3S5PCYPvJmKe_KnnpHPr64-rd-0Nx9eX68vb1rLOzW3kho2DshGr4RRAwyeST8OXgBwa9Toe0BOBRXcOztyKzlISYceEXsrvGNn5Pmy9zanLwdXZr0PxbppMtGlQ9Gd7LuqI63ks3_IXTrkWI_TlIpeKqylUucLtTWT0yH6NGdj6xvdPtgUnQ91fsmkAIWCySq8uCNUZnbf5q05lKKvNx_vsriwNqdSsvP6Noe9yUeNoE9R6SUqXaPSp6g0qw5dnFLZuHX579n_l34BF_-S5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259671225</pqid></control><display><type>article</type><title>SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, G. W. ; Valenza, F. ; Muolo, M. L. ; Passerone, A.</creator><creatorcontrib>Liu, G. W. ; Valenza, F. ; Muolo, M. L. ; Passerone, A.</creatorcontrib><description>A composite joining technique, using a Ni–56Si filler alloy and Mo as interlayers, was used to join SiC to SiC and to Kovar. The wetting of the Ni–Si alloy on SiC ceramic was studied in a vacuum at 1,350 °C by the sessile drop technique as a function of time; the non-reactive wetting characteristics in the Ni–Si/SiC system were confirmed, with an equilibrium contact angle of about 23°. SiC/SiC joints were fabricated by two processes using a Ni–Si/Mo/Ni–Si structure as the interlayer. SiC/Kovar joints were produced by means of a multilayer structure: molybdenum, which is used as the interlayer, was joined to Kovar on one side by means of transient liquid phase bonding and to SiC on the other side, using a Ni–Si coating as a filler alloy. The resulting joints were analyzed and discussed in terms of joint morphology and microstructure, joint strength, and fracture behavior. Two interfacial layers form at the Kovar/Mo and the Mo/Ni–Si interfaces due to dissolution and interdiffusion phenomena between the metallic elements, without there being any observable reactions with the SiC component. The type of joining process and the experimental conditions used play a key role in determining the joint microstructure and composition, the joint strength and its fracture behavior.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4337-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloy systems ; Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Contact angle ; Crystallography and Scattering Methods ; Euromat 2009 ; Ferrous alloys ; Fillers ; Fracture mechanics ; Interdiffusion ; Interlayers ; Intermetallic compounds ; Joining ; Kovar (trademark) ; Liquid phases ; Materials Science ; Microstructure ; Molybdenum ; Morphology ; Multilayers ; Nickel ; Nickel base alloys ; North American Industry Classification System ; Polymer Sciences ; Silicon base alloys ; Silicon carbide ; Silicon compounds ; Solid Mechanics ; Superalloys ; Transient liquid phase bonding ; Wetting</subject><ispartof>Journal of materials science, 2010-08, Vol.45 (16), p.4299-4307</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-62a3db13df75a7b0bf36fdbf5004ca7df901425254fecd4c640662b91119c5fe3</citedby><cites>FETCH-LOGICAL-c487t-62a3db13df75a7b0bf36fdbf5004ca7df901425254fecd4c640662b91119c5fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-4337-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-4337-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Liu, G. W.</creatorcontrib><creatorcontrib>Valenza, F.</creatorcontrib><creatorcontrib>Muolo, M. L.</creatorcontrib><creatorcontrib>Passerone, A.</creatorcontrib><title>SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A composite joining technique, using a Ni–56Si filler alloy and Mo as interlayers, was used to join SiC to SiC and to Kovar. The wetting of the Ni–Si alloy on SiC ceramic was studied in a vacuum at 1,350 °C by the sessile drop technique as a function of time; the non-reactive wetting characteristics in the Ni–Si/SiC system were confirmed, with an equilibrium contact angle of about 23°. SiC/SiC joints were fabricated by two processes using a Ni–Si/Mo/Ni–Si structure as the interlayer. SiC/Kovar joints were produced by means of a multilayer structure: molybdenum, which is used as the interlayer, was joined to Kovar on one side by means of transient liquid phase bonding and to SiC on the other side, using a Ni–Si coating as a filler alloy. The resulting joints were analyzed and discussed in terms of joint morphology and microstructure, joint strength, and fracture behavior. Two interfacial layers form at the Kovar/Mo and the Mo/Ni–Si interfaces due to dissolution and interdiffusion phenomena between the metallic elements, without there being any observable reactions with the SiC component. The type of joining process and the experimental conditions used play a key role in determining the joint microstructure and composition, the joint strength and its fracture behavior.</description><subject>Alloy systems</subject><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Contact angle</subject><subject>Crystallography and Scattering Methods</subject><subject>Euromat 2009</subject><subject>Ferrous alloys</subject><subject>Fillers</subject><subject>Fracture mechanics</subject><subject>Interdiffusion</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Joining</subject><subject>Kovar (trademark)</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>North American Industry Classification System</subject><subject>Polymer Sciences</subject><subject>Silicon base alloys</subject><subject>Silicon carbide</subject><subject>Silicon compounds</subject><subject>Solid Mechanics</subject><subject>Superalloys</subject><subject>Transient liquid phase bonding</subject><subject>Wetting</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc-KFDEQh4MoOK4-gLcGD-Khd6vytxtPy7Dq4qrg6Dmk08mQoSdZkx5xbr6Db-iTmLEFWUFCqKL4vqLgR8hThHMEUBcFoROsBYSWM6Zado-sUCjW8g7YfbICoLSlXOJD8qiUHQAIRXFFXm7C-qL-xsSxOfVv01eTm10KMcRtMxyb9-Hn9x-b8Bt4l5oQZ5cnc3S5PCYPvJmKe_KnnpHPr64-rd-0Nx9eX68vb1rLOzW3kho2DshGr4RRAwyeST8OXgBwa9Toe0BOBRXcOztyKzlISYceEXsrvGNn5Pmy9zanLwdXZr0PxbppMtGlQ9Gd7LuqI63ks3_IXTrkWI_TlIpeKqylUucLtTWT0yH6NGdj6xvdPtgUnQ91fsmkAIWCySq8uCNUZnbf5q05lKKvNx_vsriwNqdSsvP6Noe9yUeNoE9R6SUqXaPSp6g0qw5dnFLZuHX579n_l34BF_-S5w</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Liu, G. W.</creator><creator>Valenza, F.</creator><creator>Muolo, M. L.</creator><creator>Passerone, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers</title><author>Liu, G. W. ; Valenza, F. ; Muolo, M. L. ; Passerone, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-62a3db13df75a7b0bf36fdbf5004ca7df901425254fecd4c640662b91119c5fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloy systems</topic><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Contact angle</topic><topic>Crystallography and Scattering Methods</topic><topic>Euromat 2009</topic><topic>Ferrous alloys</topic><topic>Fillers</topic><topic>Fracture mechanics</topic><topic>Interdiffusion</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Joining</topic><topic>Kovar (trademark)</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>North American Industry Classification System</topic><topic>Polymer Sciences</topic><topic>Silicon base alloys</topic><topic>Silicon carbide</topic><topic>Silicon compounds</topic><topic>Solid Mechanics</topic><topic>Superalloys</topic><topic>Transient liquid phase bonding</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, G. W.</creatorcontrib><creatorcontrib>Valenza, F.</creatorcontrib><creatorcontrib>Muolo, M. L.</creatorcontrib><creatorcontrib>Passerone, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, G. W.</au><au>Valenza, F.</au><au>Muolo, M. L.</au><au>Passerone, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>45</volume><issue>16</issue><spage>4299</spage><epage>4307</epage><pages>4299-4307</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A composite joining technique, using a Ni–56Si filler alloy and Mo as interlayers, was used to join SiC to SiC and to Kovar. The wetting of the Ni–Si alloy on SiC ceramic was studied in a vacuum at 1,350 °C by the sessile drop technique as a function of time; the non-reactive wetting characteristics in the Ni–Si/SiC system were confirmed, with an equilibrium contact angle of about 23°. SiC/SiC joints were fabricated by two processes using a Ni–Si/Mo/Ni–Si structure as the interlayer. SiC/Kovar joints were produced by means of a multilayer structure: molybdenum, which is used as the interlayer, was joined to Kovar on one side by means of transient liquid phase bonding and to SiC on the other side, using a Ni–Si coating as a filler alloy. The resulting joints were analyzed and discussed in terms of joint morphology and microstructure, joint strength, and fracture behavior. Two interfacial layers form at the Kovar/Mo and the Mo/Ni–Si interfaces due to dissolution and interdiffusion phenomena between the metallic elements, without there being any observable reactions with the SiC component. The type of joining process and the experimental conditions used play a key role in determining the joint microstructure and composition, the joint strength and its fracture behavior.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4337-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2010-08, Vol.45 (16), p.4299-4307 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_869852512 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloy systems Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Contact angle Crystallography and Scattering Methods Euromat 2009 Ferrous alloys Fillers Fracture mechanics Interdiffusion Interlayers Intermetallic compounds Joining Kovar (trademark) Liquid phases Materials Science Microstructure Molybdenum Morphology Multilayers Nickel Nickel base alloys North American Industry Classification System Polymer Sciences Silicon base alloys Silicon carbide Silicon compounds Solid Mechanics Superalloys Transient liquid phase bonding Wetting |
title | SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SiC/SiC%20and%20SiC/Kovar%20joining%20by%20Ni%E2%80%93Si%20and%20Mo%20interlayers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20G.%20W.&rft.date=2010-08-01&rft.volume=45&rft.issue=16&rft.spage=4299&rft.epage=4307&rft.pages=4299-4307&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4337-3&rft_dat=%3Cgale_proqu%3EA365071536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259671225&rft_id=info:pmid/&rft_galeid=A365071536&rfr_iscdi=true |