Support Vector Machine-Based Endmember Extraction

Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2009-03, Vol.47 (3), p.771-791
Hauptverfasser: Filippi, A.M., Archibald, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 3
container_start_page 771
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Filippi, A.M.
Archibald, R.
description Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.
doi_str_mv 10.1109/TGRS.2008.2004708
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_869848030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4696010</ieee_id><sourcerecordid>1770349690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</originalsourceid><addsrcrecordid>eNp90U1rGzEQBmBRGqib5AeEXtxCSS7rzmglrXRMg_MBDoHm4ypk7YhssFeutIbk30eLTQ499CId9MxohpexE4QZIphfD1d_7mccQI-HaEB_YhOUUleghPjMJoBGVVwb_oV9zfkFAIXEZsLwfrvZxDRMn8gPMU1vnX_ueqp-u0ztdN63a1ovKU3nr0Nyfuhif8QOgltlOt7fh-zxcv5wcV0t7q5uLs4XlRdYD1UwbRDBURmFyl9ccYMkatJSOelbY1qHrVxyHWrQy6XjQgepWh4kR-GFqw_Z913fmIfOZt8N5J997PsyqDVSaxTFnO7MJsW_W8qDXXfZ02rleorbbLUyWmioociz_0psGqiFUWakP_6hL3Gb-rKr1bIR4yJYEO6QTzHnRMFuUrd26c0i2DEROyZix0TsPpFS83Pf2GXvViG53nf5o5AjB9koVdy3neuI6ONZKKMAoX4HNc6Rag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857462911</pqid></control><display><type>article</type><title>Support Vector Machine-Based Endmember Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Filippi, A.M. ; Archibald, R.</creator><creatorcontrib>Filippi, A.M. ; Archibald, R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Computational Sciences</creatorcontrib><description>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</description><identifier>ISSN: 0196-2892</identifier><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1558-0644</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1109/TGRS.2008.2004708</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ACCURACY ; ALGORITHMS ; Applied geophysics ; Computation ; Computational efficiency ; COMPUTERS ; Data mining ; DATA PROCESSING ; DISTRIBUTION ; Earth sciences ; Earth, ocean, space ; Endmember extraction ; Exact sciences and technology ; Extraction ; Humans ; Hyperspectral imaging ; Hyperspectral sensors ; Indexes ; Internal geophysics ; Laboratories ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Optical noise ; Pixel ; Preserves ; Remote sensing ; Representations ; Support vector machines ; support vector machines (SVMs) ; TOLERANCE ; VECTORS</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-03, Vol.47 (3), p.771-791</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</citedby><cites>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4696010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4696010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21205766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/958814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Filippi, A.M.</creatorcontrib><creatorcontrib>Archibald, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><title>Support Vector Machine-Based Endmember Extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</description><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>Applied geophysics</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>COMPUTERS</subject><subject>Data mining</subject><subject>DATA PROCESSING</subject><subject>DISTRIBUTION</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Endmember extraction</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Humans</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Indexes</subject><subject>Internal geophysics</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Optical noise</subject><subject>Pixel</subject><subject>Preserves</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>TOLERANCE</subject><subject>VECTORS</subject><issn>0196-2892</issn><issn>0034-4257</issn><issn>1558-0644</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1rGzEQBmBRGqib5AeEXtxCSS7rzmglrXRMg_MBDoHm4ypk7YhssFeutIbk30eLTQ499CId9MxohpexE4QZIphfD1d_7mccQI-HaEB_YhOUUleghPjMJoBGVVwb_oV9zfkFAIXEZsLwfrvZxDRMn8gPMU1vnX_ueqp-u0ztdN63a1ovKU3nr0Nyfuhif8QOgltlOt7fh-zxcv5wcV0t7q5uLs4XlRdYD1UwbRDBURmFyl9ccYMkatJSOelbY1qHrVxyHWrQy6XjQgepWh4kR-GFqw_Z913fmIfOZt8N5J997PsyqDVSaxTFnO7MJsW_W8qDXXfZ02rleorbbLUyWmioociz_0psGqiFUWakP_6hL3Gb-rKr1bIR4yJYEO6QTzHnRMFuUrd26c0i2DEROyZix0TsPpFS83Pf2GXvViG53nf5o5AjB9koVdy3neuI6ONZKKMAoX4HNc6Rag</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Filippi, A.M.</creator><creator>Archibald, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>OTOTI</scope></search><sort><creationdate>20090301</creationdate><title>Support Vector Machine-Based Endmember Extraction</title><author>Filippi, A.M. ; Archibald, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>Applied geophysics</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>COMPUTERS</topic><topic>Data mining</topic><topic>DATA PROCESSING</topic><topic>DISTRIBUTION</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Endmember extraction</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Humans</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Indexes</topic><topic>Internal geophysics</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Optical noise</topic><topic>Pixel</topic><topic>Preserves</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>TOLERANCE</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippi, A.M.</creatorcontrib><creatorcontrib>Archibald, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Filippi, A.M.</au><au>Archibald, R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Computational Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support Vector Machine-Based Endmember Extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>771</spage><epage>791</epage><pages>771-791</pages><issn>0196-2892</issn><issn>0034-4257</issn><eissn>1558-0644</eissn><eissn>1879-0704</eissn><coden>IGRSD2</coden><abstract>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2004708</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-03, Vol.47 (3), p.771-791
issn 0196-2892
0034-4257
1558-0644
1879-0704
language eng
recordid cdi_proquest_miscellaneous_869848030
source IEEE Electronic Library (IEL)
subjects ACCURACY
ALGORITHMS
Applied geophysics
Computation
Computational efficiency
COMPUTERS
Data mining
DATA PROCESSING
DISTRIBUTION
Earth sciences
Earth, ocean, space
Endmember extraction
Exact sciences and technology
Extraction
Humans
Hyperspectral imaging
Hyperspectral sensors
Indexes
Internal geophysics
Laboratories
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Optical noise
Pixel
Preserves
Remote sensing
Representations
Support vector machines
support vector machines (SVMs)
TOLERANCE
VECTORS
title Support Vector Machine-Based Endmember Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20Vector%20Machine-Based%20Endmember%20Extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Filippi,%20A.M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-03-01&rft.volume=47&rft.issue=3&rft.spage=771&rft.epage=791&rft.pages=771-791&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2004708&rft_dat=%3Cproquest_RIE%3E1770349690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857462911&rft_id=info:pmid/&rft_ieee_id=4696010&rfr_iscdi=true