Support Vector Machine-Based Endmember Extraction
Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2009-03, Vol.47 (3), p.771-791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 791 |
---|---|
container_issue | 3 |
container_start_page | 771 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 47 |
creator | Filippi, A.M. Archibald, R. |
description | Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise. |
doi_str_mv | 10.1109/TGRS.2008.2004708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_869848030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4696010</ieee_id><sourcerecordid>1770349690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</originalsourceid><addsrcrecordid>eNp90U1rGzEQBmBRGqib5AeEXtxCSS7rzmglrXRMg_MBDoHm4ypk7YhssFeutIbk30eLTQ499CId9MxohpexE4QZIphfD1d_7mccQI-HaEB_YhOUUleghPjMJoBGVVwb_oV9zfkFAIXEZsLwfrvZxDRMn8gPMU1vnX_ueqp-u0ztdN63a1ovKU3nr0Nyfuhif8QOgltlOt7fh-zxcv5wcV0t7q5uLs4XlRdYD1UwbRDBURmFyl9ccYMkatJSOelbY1qHrVxyHWrQy6XjQgepWh4kR-GFqw_Z913fmIfOZt8N5J997PsyqDVSaxTFnO7MJsW_W8qDXXfZ02rleorbbLUyWmioociz_0psGqiFUWakP_6hL3Gb-rKr1bIR4yJYEO6QTzHnRMFuUrd26c0i2DEROyZix0TsPpFS83Pf2GXvViG53nf5o5AjB9koVdy3neuI6ONZKKMAoX4HNc6Rag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857462911</pqid></control><display><type>article</type><title>Support Vector Machine-Based Endmember Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Filippi, A.M. ; Archibald, R.</creator><creatorcontrib>Filippi, A.M. ; Archibald, R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Computational Sciences</creatorcontrib><description>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</description><identifier>ISSN: 0196-2892</identifier><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1558-0644</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1109/TGRS.2008.2004708</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ACCURACY ; ALGORITHMS ; Applied geophysics ; Computation ; Computational efficiency ; COMPUTERS ; Data mining ; DATA PROCESSING ; DISTRIBUTION ; Earth sciences ; Earth, ocean, space ; Endmember extraction ; Exact sciences and technology ; Extraction ; Humans ; Hyperspectral imaging ; Hyperspectral sensors ; Indexes ; Internal geophysics ; Laboratories ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Optical noise ; Pixel ; Preserves ; Remote sensing ; Representations ; Support vector machines ; support vector machines (SVMs) ; TOLERANCE ; VECTORS</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-03, Vol.47 (3), p.771-791</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</citedby><cites>FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4696010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4696010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21205766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/958814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Filippi, A.M.</creatorcontrib><creatorcontrib>Archibald, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><title>Support Vector Machine-Based Endmember Extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</description><subject>ACCURACY</subject><subject>ALGORITHMS</subject><subject>Applied geophysics</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>COMPUTERS</subject><subject>Data mining</subject><subject>DATA PROCESSING</subject><subject>DISTRIBUTION</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Endmember extraction</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Humans</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Indexes</subject><subject>Internal geophysics</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Optical noise</subject><subject>Pixel</subject><subject>Preserves</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>TOLERANCE</subject><subject>VECTORS</subject><issn>0196-2892</issn><issn>0034-4257</issn><issn>1558-0644</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1rGzEQBmBRGqib5AeEXtxCSS7rzmglrXRMg_MBDoHm4ypk7YhssFeutIbk30eLTQ499CId9MxohpexE4QZIphfD1d_7mccQI-HaEB_YhOUUleghPjMJoBGVVwb_oV9zfkFAIXEZsLwfrvZxDRMn8gPMU1vnX_ueqp-u0ztdN63a1ovKU3nr0Nyfuhif8QOgltlOt7fh-zxcv5wcV0t7q5uLs4XlRdYD1UwbRDBURmFyl9ccYMkatJSOelbY1qHrVxyHWrQy6XjQgepWh4kR-GFqw_Z913fmIfOZt8N5J997PsyqDVSaxTFnO7MJsW_W8qDXXfZ02rleorbbLUyWmioociz_0psGqiFUWakP_6hL3Gb-rKr1bIR4yJYEO6QTzHnRMFuUrd26c0i2DEROyZix0TsPpFS83Pf2GXvViG53nf5o5AjB9koVdy3neuI6ONZKKMAoX4HNc6Rag</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Filippi, A.M.</creator><creator>Archibald, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>OTOTI</scope></search><sort><creationdate>20090301</creationdate><title>Support Vector Machine-Based Endmember Extraction</title><author>Filippi, A.M. ; Archibald, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f9df4fae708e14526291e43e856a5cd99da1d5b28f308bba248f56d2f5214c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACCURACY</topic><topic>ALGORITHMS</topic><topic>Applied geophysics</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>COMPUTERS</topic><topic>Data mining</topic><topic>DATA PROCESSING</topic><topic>DISTRIBUTION</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Endmember extraction</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Humans</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Indexes</topic><topic>Internal geophysics</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Optical noise</topic><topic>Pixel</topic><topic>Preserves</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>TOLERANCE</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filippi, A.M.</creatorcontrib><creatorcontrib>Archibald, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Filippi, A.M.</au><au>Archibald, R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Computational Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Support Vector Machine-Based Endmember Extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>47</volume><issue>3</issue><spage>771</spage><epage>791</epage><pages>771-791</pages><issn>0196-2892</issn><issn>0034-4257</issn><eissn>1558-0644</eissn><eissn>1879-0704</eissn><coden>IGRSD2</coden><abstract>Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2004708</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2009-03, Vol.47 (3), p.771-791 |
issn | 0196-2892 0034-4257 1558-0644 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_869848030 |
source | IEEE Electronic Library (IEL) |
subjects | ACCURACY ALGORITHMS Applied geophysics Computation Computational efficiency COMPUTERS Data mining DATA PROCESSING DISTRIBUTION Earth sciences Earth, ocean, space Endmember extraction Exact sciences and technology Extraction Humans Hyperspectral imaging Hyperspectral sensors Indexes Internal geophysics Laboratories Mathematical analysis MATHEMATICAL METHODS AND COMPUTING Optical noise Pixel Preserves Remote sensing Representations Support vector machines support vector machines (SVMs) TOLERANCE VECTORS |
title | Support Vector Machine-Based Endmember Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Support%20Vector%20Machine-Based%20Endmember%20Extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Filippi,%20A.M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-03-01&rft.volume=47&rft.issue=3&rft.spage=771&rft.epage=791&rft.pages=771-791&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2004708&rft_dat=%3Cproquest_RIE%3E1770349690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857462911&rft_id=info:pmid/&rft_ieee_id=4696010&rfr_iscdi=true |